
Foundations of data
analysis with R
An Introduction to Modern
Data Analysis

This book is a compilation of lesson notes from the 3-month online course offered by The
GRAPH Courses.. To access the lesson videos, exercise files, and online quizzes, please visit

our website, thegraphcourses.org

GRAPH Network

1

Lesson notes | Setting up R and RStudio

Created by the GRAPH Courses team

January 2023

This document serves as an accompaniment for a lesson found on https://
thegraphcourses.org.

The GRAPH Courses is a project of the Global Research and Analyses for Public Health
(GRAPH) Network, a non-profit headquartered at the University of Geneva Global Health
Institute, and supported by the World Health Organization (WHO) and other partners

https://thegraphcourses.org/

2

3

.

.

.

.
.
.

.
.
.

.

Introduction
Working locally vs. on the cloud
RStudio on the cloud
Set up on Windows

Download and install R
Download, install & run RStudio

Set up on macOS
Download and install R
Download, install & run RStudio

Wrap up

1. You can access R and RStudio, either through RStudio.cloud or by downloading and
installing these software to your computer.

To start you off on your R journey, we’ll need to set you up with the required software, R
and RStudio. R is the programming language that you’ll use write code, while RStudio is
an integrated development environment (IDE) that makes working with R easier.

There are two main ways that you can access and work with R and RStudio: download
them to your computer, or use a web server to access them on the cloud.

Using R and RStudio on the cloud is the less common option, but it may be the right
choice if you are just getting started with programming, and you do not yet want to
worry about installing software. You may also prefer the cloud option if your local
computer is old, slow, or otherwise unfit for running R.

Below, we go through the setup process for RStudio Cloud, Rstudio on Windows and
RStudio on macOS separately. Jump to the section that is relevant for you!

Learning objective

Introduction

Working locally vs. on the cloud

4

than 25 hours per month, you may want to avoid this option.

If you’ll be working on the cloud, follow the steps below:

1. Go to the website rstudio.cloud and follow the instructions to sign up for a free
account. (We recommend signing up with Google if you have a Google account, so
you don’t need to remember any new passwords).

2. Once you’re done, click on the “New Project” icon at the top right, and select “New
RStudio Project”.

You should see a screen like this:

RStudio on the cloud

https://rstudio.cloud/

5

This is RStudio, your new home for a long time to come!

At the top of the screen, rename the project from “Untitled Project” to something like
“r_intro”.

You can start using R by typing code into the “console” pane on the left:

6

Try using R as a calculator here; type and press Enter.

That’s it; you’re ready to roll. Whenever you want to reopen RStudio, navigate to
rstudio.cloud,

Proceed to the “wrapping up” section of the lesson.

Download and install R

If you’re working on Windows, follow the steps below to download and install R:

1. Go to cran.rstudio.com to access the R installation page. Then click the download
link for Windows:

2 + 2

Set up on Windows

https://cran.rstudio.com/

7

2. Choose the “base” sub-directory.

3. Then click on the download link at the top of the page to download the latest
version of R:

Note that the screenshot above may not show the latest version.

4. After the download is finished, click on the downloaded file, then follow the
instructions on the installation pop-up window. During installation, you should not
have to change any of the defaults; just keep clicking “Next” until the installation is
done.

Well done! You should now have R on your computer. But you likely won’t ever need
to interact with R directly. Instead you’ll use the RStudio IDE to work with R. Follow
the instructions in the next section to get RStudio.

Download, install & run RStudio

To download RStudio, go to rstudio.com/products/rstudio/download/#download and
download the Windows version.

https://www.rstudio.com/products/rstudio/download/#download

8

After the download is finished, click on the downloaded file and follow the installation
instructions.

Once installed, RStudio can be opened like any application on your computer: press the
Windows key to bring up the Start menu, and search for “rstudio”. Click to to open the
app:

You should see a window like this:

9

This is RStudio, your new home for a long time to come!

You can start using R by typing code into the “console” pane on the left:

Try using R as a calculator here; type and press Enter.

That’s it; you’re ready to roll. Proceed to the “wrapping up” section of the lesson.

2 + 2

10

Download and install R

If you’re working on macOS, follow the steps below to download and install R:

1. Go to cran.rstudio.com to access the R installation page. Then click the link for
macOS:

2. Download and install the relevant R version for your Mac. For most people, the first
option under “Latest release” will be the one to get.

Set up on macOS

https://cran.rstudio.com/

11

3. After the download is finished, click on the downloaded file, then follow the
instructions on the installation pop-up window.

Well done! You should now have R on your computer. But you likely won’t ever need to
interact with R directly. Instead you’ll use the RStudio IDE to work with R. Follow the
instructions in the next section to get RStudio.

Download, install & run RStudio

To download RStudio, go to rstudio.com/products/rstudio/download/#download and
download the version for macOS.

After the download is finished, click on the downloaded file and follow the installation
instructions.

https://www.rstudio.com/products/rstudio/download/#download

12

Once installed, RStudio can be opened like any application on your computer: Press
 + to open Spotlight, then search for “rstudio”. Click to open the app.

You should see a window like this:

This is RStudio, your new home for a long time to come!

You can start using R by typing code into the “console” pane on the left:

Command Space

13

Try using R as a calculator here; type and press Enter.

You should now have access to R and RStudio, so you’re all set to begin the journey of
learning to use these immensely powerful tools. See you in the next session!

The following team members contributed to this lesson:

2 + 2

Wrap up

Contributors

KENE DAVID NWOSU
Data analyst, the GRAPH Network
Passionate about world improvement

LAMECK AGASA
Statistician/Data Scientist

MICHAL SHRESTHA
Global Health Researcher, the GRAPH Network
An advocate of health equity & justice through equal access to health data

https://thegraphcourses.org/members/kendavidn/
https://thegraphcourses.org/members/ondieki
https://thegraphcourses.org/members/michals

14

Some material in this lesson was adapted from the following sources:

Nordmann, Emily, and Heather Cleland-Woods. Chapter 2 Programming Basics | Data
Skills. psyteachr.github.io, https://psyteachr.github.io/data‑skills‑v1/programming
‑basics.html Accessed 23 Feb. 2022.

This work is licensed under the Creative Commons Attribution Share Alike license.

ELTON MUKONDA
Data analyst, the GRAPH Network
A data enthusiast with a passion for population health research

OLIVIA KEISER
Head of division of Infectious Diseases and Mathematical Modelling,
University of Geneva

References

https://psyteachr.github.io/data-skills-v1/programming-basics.html
https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://thegraphcourses.org/members/elmuko/
http://127.0.0.1:4897/NA

1

Lesson notes | Using RStudio

Created by the GRAPH Courses team

January 2023

This document serves as an accompaniment for a lesson found on https://
thegraphcourses.org.

The GRAPH Courses is a project of the Global Research and Analyses for Public Health
(GRAPH) Network, a non-profit headquartered at the University of Geneva Global Health
Institute, and supported by the World Health Organization (WHO) and other partners

https://thegraphcourses.org/

2

3

.

.

.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

Learning objectives
Introduction
The RStudio panes

Source/Editor
Console
Environment
History
Files
Plots
Packages
Viewer
Help

RStudio options
Command palette
Wrapping up
Further resources
References

1. You can identify and use the following tabs in RStudio: Source, Console,
Environment, History, Files, Plots, Packages, Help and Viewer.

2. You can modify RStudio’s interface options to suit your needs.

Now that you have access to R & RStudio, let’s go on a quick tour of the RStudio interface,
your digital home for a long time to come.

We will cover a lot of territory quickly. Do not panic. You are not expected to remember it
all this. Rather, you will see these topics again and again throughout the course, and you
will naturally assimilate them that way.

You can also refer back to this lesson as you progress.

The goal here is simply to make you aware of the tools at your disposal within RStudio.

To get started, you need to open the RStudio application:

Learning objectives

Introduction

4

If you are working with RStudio Cloud, go to rstudio.cloud, log in, then click on the
“r_intro” project that you created in the last lesson. (If you do not see this, simply
create a new R project using the “New Project” icon at the top right).

If you are working on your local computer, go to your applications folder and double
click on the RStudio icon. Or you search for this application from your Start Menu
(Windows), or through Spotlight (Mac).

By default, RStudio is arranged into four window panes.

If you only see three panes, open a new script with . This
should reveal one more pane.

Before we go any further, we will rearrange these panes to improve the usability of the
interface.

To do this, in the RStudio menu at the top of the screen, select
 to bring up RStudio’s options. Then under , adjust the pane

arrangement. The arrangement we recommend is shown below.

The RStudio panes

File > New File > R Script

Tools > Global
Options Pane Layout

https://rstudio.cloud/

5

At the top left pane is the Source tab, and at the top right pane, you should have the
Console tab.

Then at the bottom left pane, no tab options should checked—this section should be left
empty, with the drop-down saying just “TabSet”.

Finally, at the bottom right pane, you should check the following tabs: Environment,
History, Files, Plots, Packages, Help and Viewer.

Great, now you should have an RStudio window that looks something like this:

6

The top-left pane is where you will do most of the coding. Make this larger by clicking on
its maximize icon:

Note that you can drag the bar that separates the window panes to resize them.

Now let’s look at each of the RStudio tabs one by one. Below is a summary image of what
we will discuss:

7

Source/Editor

The source or editor is where your R “scripts” go. A script is a text document where you
write and save code.

Because this is where you will do most of your coding, it is important that you have a lot
of visual space. That is why we rearranged the RStudio pane layout above—to give the
Editor more space.

Now let’s see how to use this Editor.

8

First, open a new script under the File menu if one is not yet open:
. In the script, type the following:

To run code, place your cursor anywhere in the code, then hit + on
macOS, or + on Windows.

This should send the code to the Console and run it.

You can also run multiple lines at once. To try this, add a second line to your script, so
that it now reads:

Now drag your cursor to highlight both lines and press / + .

To run the entire script, you can use / + to select all code, then press
/ + . Try this now. Deselect your code, then try to the shortcut to

select all.

There is also a ‘Run’ button at the top right of the source panel (

), with which you can run code (either the current line, or all highlighted
code). But you should try to use the keyboard shortcut instead.

To open the script in a new window, click on the third icon in the toolbar directly above
the script.

To put the window back, click on the same button on the now-external window.

Next, save the script. Hit / + to bring up the Save dialog box. Give it a
file name like “rstudio_intro”.

If you are working with RStudio cloud, the file will be saved in your project folder.

File > New File >
R Script

print("excited for R!")

Command Enter
Control Enter

print("excited for R!")
print("and RStudio!")

Command Control Enter

Command Control A
Command Control Enter

Command Control S

9

If you are working on your local computer, save the file in an easy-to-locate part of
your computer, perhaps your desktop. (Later on we will think about the “proper”
way to organize and store scripts).

You can view data frames (which are like spreadsheets in R) in the same pane. To
observe this, type and run the code below on a new line in your script:

Notice the uppercase “V” in .

 is the name of a dataset that comes loaded with R. It gives the average heights and
weights for American women aged 30–39.

You can click on the “x” icon to the right of the “women” tab to close this data viewer.

Console

The console, at the bottom left, is where code is executed. You can type code directly
here, but it will not be saved.

Type a random piece of code (maybe a calculation like) and press ‘Enter’.

View(women)

View()

women

3 + 3

10

If you place your cursor on the last line of the console, and you press the up arrow, you
can go back to the last code that was run. Keep pressing it to cycle to the previous lines.

To run any of these previous lines, press Enter.

Environment

At the top right of the RStudio Window, you should see the Environment tab.

The Environment tab shows datasets and other objects that are loaded into R’s working
memory, or “workspace”.

To explore this tab, let’s import a dataset into your environment from the web. Type the
code below into your script and run it:

You don’t need to understand exactly what the code above is doing for
now. We just want to quickly show you the basic features of the
Environment pane; we’ll look at data importing in detail later.

Also, if you do not have active internet access, the code above will not
run. You can skip this section and move to the “History” tab.

ebola_data <- read.csv("https://tinyurl.com/ebola-data-sample")

11

You have now imported the dataset and stored it in an object named . (You
could have named the object anything you want.)

Now that the dataset is stored by R, you should be able to see it in the Environment pane.
If you click on the blue drop-down icon beside the object’s name in the Environment tab
to reveal a summary.

Try clicking directly on the dataset from the Environment tab. This opens it
in a ‘View’ tab.

You can remove an object from the workspace with the function. Type and run the
following in a new line on your R script.

Notice that the object no longer shows up in your environment after having
run that code.

The broom icon, at the top of the Environment pane can also be used to clear your
workspace.

To practice using it, try re-running the line above that imports the Ebola dataset, then
clear the object using the broom icon.

History

Next, the History tab shows previous commands you have run.

ebola_data

ebola_data

rm()

rm(ebola_data)

ebola_data

12

You can click a line to highlight it, then send it to the console or to your script with the
“To Console” and “To Source” icons at the top of this tab.

To select multiple lines, use the “Shift-click” method: click the first item you want to
select, then hold down the “Shift” key and click the last item you want to select.

Finally, notice that there is a search bar at the top right of the History pane where you
can search for past commands that you have run.

Files

Next, the Files tab. This shows the files and folders in the folder you are working in.

The tab allows you to interact with your computer’s file system.

Try playing with some of the buttons here, to see what they do. You should try at least
the following:

Make a new folder

Delete that folder

Make a new R Script

Rename that script

13

Plots

Next, the Plots tab. This is where figures that are generated by R will show up. Try
creating a simple plot with the following code:

That code creates a plot of the two variables in the dataset. You should see this
figure in the Plots tab.

Now, test out the buttons at the top of this tab to explore what they do. In particular, try
to export a plot to your computer.

Packages

Next, let’s look at the Packages tab.

plot(women)

women

14

Packages are collections of R code that extend the functionality of R. We will discuss
packages in detail in a future lesson.

For now, it is important to know that to use a package, you need to install then load it.
Packages need to be installed only once, but must be loaded in each new R session.

All the package names you see (in blue font) are packages that are installed on your
system. And packages with a checkmark are packages which are loaded in the current
session.

You can install a package with the Install button of the Packages tab.

But it is better to install and load packages with R code, rather than the Install button.
Let’s try this. Type and run the code below to install the {highcharter} package.

The first line installs the package. The second line loads the package from your package
library.

Because you only need to install a package once, you can now remove the installation line
from your script.

Now that the {highcharter} package has been installed and loaded, you can use the
functions that come in the package. To try this, type and run the code below:

install.packages("highcharter")
library(highcharter)

highcharter::hchart(women$weight)

15

This code uses the function from the {highcharter} package to plot an
interactive histogram showing the distribution of weights in the dataset.

(Of course, you may not yet know what a function is. We’ll get to this soon.)

Viewer

Notice that the histogram above shows up in a Viewer tab. This tab allows you to preview
HTML files and interactive objects.

Help

Lastly, the Help tab shows the documentation for different R objects. Try typing out and
running each line below to see what this documentation looks like.

Help files are not always very easy to understand for beginners, but with time they will
become more useful.

RStudio has a number of useful options for changing it’s look and functionality. Let’s try
these. You may not understand all the changes made for now. That’s fine.

In the RStudio menu at the top of the screen, select to bring
up RStudio’s options.

hchart()
women

?hchart
?women
?read.csv

RStudio options

Tools > Global Options

16

Now, under , choose your ideal theme. (We like the “Crimson Editor”
and “Tomorrow Night” themes.)

Under , check “Highlight R function calls”. What this does is give
your R functions a unique color, improving readability. You will understand this later.

Also under , check “Rainbow parentheses”. What this does is make
your “nested parentheses” easier to read by giving each pair a unique color.

Appearance

Code > Display

Code > Display

17

Finally under , uncheck the box that says “Restore .RData into
workspace at startup”. You don’t want to restore any data to your workspace (or
environment) when you start RStudio. Starting with a clean workspace each time is
less likely to lead to errors.

This also means that you never want to “save your workspace to .RData on exit”,
so set this to Never.

The Rstudio command palette gives instant, searchable access to many of the RStudio
menu options and settings that we have seen so far.

The palette can be invoked with the keyboard shortcut + + (+ +
on macOS).

It’s also available on the Tools menu (Tools -> Show Command Palette).

Try using it to:

Create a new script (Search “new script” and click on the relevant option)

Rename a script (Search “rename” and click on the relevant option)

General > Basic

Command palette

Ctrl Shift P Cmd Shift P

18

Congratulations! You are now a new citizen of RStudio.

Of course, you have only scratched the surface of RStudio functionality. As you advance in
your R journey, you will discover new features, and you will hopefully grow to love the
wonderful integrated development environment (IDE) that is RStudio. One good place to
start is the official RStudio IDE cheatsheet.

Below is one section of that sheet:

See you in the next lesson!

Wrapping up

https://thegraphcourses.org/wp-content/uploads/2022/03/rstudio-IDE-cheatsheet.pdf

19

1. 23 RStudio Tips, Tricks, and Shortcuts

The following team members contributed to this lesson:

Some material in this lesson was adapted from the following sources:

“Rstudio Cheatsheets.” RStudio, https://www.rstudio.com/resources/cheatsheets/.
“Chapter 1 Getting Started: Data Skills for Reproducible Research.” Chapter 1 Getting
Started | Data Skills for Reproducible Research, https://psyteachr.github.io/reprores
‑v2/intro.html.

This work is licensed under the Creative Commons Attribution Share Alike license.

Further resources

Contributors

KENE DAVID NWOSU
Data analyst, the GRAPH Network
Passionate about world improvement

LAMECK AGASA
Statistician/Data Scientist

References

https://www.dataquest.io/blog/rstudio-tips-tricks-shortcuts/
https://www.rstudio.com/resources/cheatsheets/
https://psyteachr.github.io/reprores-v2/intro.html.
https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://thegraphcourses.org/members/kendavidn/
https://thegraphcourses.org/members/ondieki

1

Lesson notes | Coding basics

Created by the GRAPH Courses team

January 2023

This document serves as an accompaniment for a lesson found on https://
thegraphcourses.org.

The GRAPH Courses is a project of the Global Research and Analyses for Public Health
(GRAPH) Network, a non-profit headquartered at the University of Geneva Global Health
Institute, and supported by the World Health Organization (WHO) and other partners

https://thegraphcourses.org/

2

3

.

.

.

.

.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.

.

Introduction
Comments
R s a calculator
Formatting code
Objects in R

Create an object
What is an object?
Datasets are objects too
Rename an object
Overwrite an object
Working with objects
Some errors with objects
Naming objects

Functions
Basic function syntax
Nesting functions

Packages
A first example: the {tableone} package
Full signifiers
pacman::p_load()

Wrapping up

1. You can write comments in R.

2. You can create section headers in RStudio.

3. You know how to use R as a calculator.

4. You can create, overwrite and manipulate R objects.

5. You understand the basic rules for naming R objects.

6. You understand the syntax for calling R functions.

7. You know how to nest multiple functions.

8. You can use install and load add-on R packages and call functions from these
packages.

Learning objectives

4

In the last lesson, you learned how to use RStudio, the wonderful integrated development
environment (IDE) that makes working with R much easier. In this lesson, you will learn
the basics of using R itself.

To get started, open RStudio, and open a new script with
on the RStudio menu.

Next, save the script with on the RStudio menu or by using the shortcut
/ + . This should bring up the Save File dialog box. Save the file with a

name like “coding_basics”.

You should now type all the code from this lesson into that script.

There are two main types of text in an R script: commands and comments. A command is
a line or lines of R code that instructs R to do something (e.g.)

A comment is text that is ignored by the computer.

Anything that follows a symbol (pronounced “hash” or “pound”) on a given line is a
comment. Try typing out and running the code below to see this:

Since they are ignored by the computer, comments are meant for humans. They help you
and others keep track of what your code is doing. Use them often! Like your mother
always says, “too much everything is bad, except for R comments”.

Question 1

True or False: both code chunks below are valid ways to comment code:?

Introduction

File > New File > R Script

File > Save
Command Control S

Comments

2 + 2

#

A comment
2 + 2 # Another comment
2 + 2

add two numbers
2 + 2

5

Note: All question answers can be found at the end of the lesson.

A fantastic use of comments is to separate your scripts into sections. If you put four
dashes after a comment, RStudio will create a new section in your code:

This has two nice benefits. Firstly, you can click on the little arrow beside the section
header to fold, or collapse, that section of code:

Second, you can click on the “Outline” icon at the top right of the Editor to view and
navigate through all the contents in your script:

R works as a calculator, and obeys the correct order of operations. Type and run the
following expressions and observe their output:

2 + 2 # add two numbers

New section ----

R s a calculator

2 + 2

[1] 4

2 - 2

[1] 0

2 * 2 # two times two

[1] 4

6

The square root command shown on the last line is a good example of an R function,
where is the argument to the function. You will see more functions soon.

We hope you remember the shortcut to run code!

To run a single line of code, place your cursor anywhere on that line,
then hit + on macOS, or + on Windows.

To run multiple lines, drag your cursor to highlight the relevant lines
then again press / + .

Question 2

In the following expression, which sign is evaluated first by R, the minus or the division?

2 / 2 # two divided by two

[1] 1

2 ^ 2 # two raised to the power of two

[1] 4

2 + 2 * 2 # this is evaluated following the order of operations

[1] 6

sqrt(100) # square root

[1] 10

100

Command Enter Control Enter

Command Control Enter

2 - 2 / 2

[1] 1

7

R does not care how you choose to space out your code.

For the math operations we did above, all the following would be valid code:

Similarly, for the function used above, any of these would be valid:

But of course, you should try to space out your code in sensible ways. What exactly is
“sensible”? Well, it may be hard for you to know at the moment. Over time, as you read

Formatting code

2+2

[1] 4

2 + 2

[1] 4

2 + 2

[1] 4

sqrt()

sqrt(100)

[1] 10

sqrt(100)

[1] 10

you can even space the command out over multiple lines
sqrt(
 100
)

[1] 10

8

other people’s code, you will learn that there are certain R conventions for code spacing
and formatting.

In the meantime, you can ask RStudio to help format your code for you. To do this,
highlight any section of code you want to reformat, and, on the RStudio menu, go to

, or use the shortcut + + .

Stuck on the + sign

If you run an incomplete line of code, R will print a sign to indicate that
it is waiting for you to finish the code.

For example, if you run the following code:

you will not get the output you expect (10). Rather the console will
and a sign:

R is waiting for you complete the closing parenthesis. You can complete
the code and get rid of the by just entering the missing parenthesis:

Alternatively, press the escape key, while your cursor is in the console
to start over.

Create an object

When you run code as we have been doing above, the result of the command (or its
value) is simply displayed in the console—it is not stored anywhere.

Code
> Reformat Code Shift Command/Control A

+

sqrt(100

sqrt(
+

+

)

ESC

Objects in R

9

To store a value for future use, assign it to an object with the assignment operator, :

The assignment operator, , is made of the ‘less than’ sign, , and a minus, . You will
use it thousands of times over your R lifetime, so please don’t type it manually! Instead,
use RStudio’s shortcut, + (alt AND minus) on Windows or + (option AND
minus) on macOS.

Also note that you can use the equals sign, , for assignment.

But this is not commonly used by the R community (mostly for historical
reasons), so we discourage it too. Follow the convention and use .

Now that you’ve created the object , R knows all about it and will keep track of it
during this R session. You can view any created objects in the Environment tab of RStudio.

What is an object?

So what exactly is an object? Think of it as a named bucket that can contain anything.
When you run the code below:

2 + 2 # R prints this result, 4, but does not store it

[1] 4

<-

my_obj <- 2 + 2 # assign the result of `2 + 2 ` to the object called `my_obj`
my_obj # print my_obj

[1] 4

<- < -

alt - option -

=

my_obj = 2 + 2

<-

my_obj

my_obj <- 20

10

you are telling R, “put the number 20 inside a bucket named ‘my_obj’”.

Once the code is run, we would say, in R terms, that “the value of object called is
20”.

And if you run this code:

you are instructing R to “put the value ‘Joanna’ inside the bucket called ‘first_name’”.

Once the code is run, we would say, in R terms, that “the value of the object
is Joanna”.

Note that R evaluates the code before putting it inside the bucket.

So, before when we ran this code,

R firsts does the calculation of , then stores the result, 4, inside the object.

my_obj

first_name <- "Joanna"

first_name

my_obj <- 2 + 2

2 + 2

11

Question 3

Consider the code chunk below:

What is the value of the object created?

A.

B. numeric

C. 6

Datasets are objects too

So far, you have been working with very simple objects. You may be thinking “Where are
the spreadsheets and datasets? Why are we writing ? Is this a primary
school maths class?!”

Be patient.

We want you to get familiar with the concept of an R object because once you start
dealing with real datasets, these will also be stored as R objects.

Let’s see a preview of this now. Type out the code below to download a dataset on Ebola
cases that we stored on Google Drive and put it in the object

.

result <- 2 + 2 + 2

result

2 + 2 + 2

my_obj <- 2 + 2

ebola_sierra_leone_data

ebola_sierra_leone_data <- read.csv("https://tinyurl.com/ebola-data-sample")
ebola_sierra_leone_data # print ebola_data

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun
4 187 NA F confirmed 2014-06-19 2014-06-24 Kailahun
5 85 20 M confirmed 2014-06-08 2014-06-24 Kailahun

12

This data contains a sample of patient information from the 2014-2016 Ebola outbreak in
Sierra Leone.

Because you can store datasets as objects, its very easy to work with multiple datasets at
the same time.

Below, we import and view another dataset from the web:

Because the dataset above is quite large, it may be helpful to look at it in the data viewer:

Notice that both datasets now appear in your Environment tab.

Rather than reading data from an internet drive as we did above, it is
more likely that you will have the data on your computer, and you will
want to read it into R from your there. We will cover this in a future
lesson.

Later in the course, we will also show you how to store and read data
from a web service like Google Drive, which is nice for easy portability.

Rename an object

You sometimes want to rename an object. It is not possible to do this directly.

To rename an object, you make a copy of the object with a new name, and delete the
original.

For example, maybe we decide that the name of the object
is too long. To change it to the shorter “ebola_data” run:

This has copied the contents from the bucket to a new
 bucket.

You can now get rid of the old bucket with the
function, which stands for “remove”:

diabetes_china <- read.csv("https://tinyurl.com/diabetes-china")

View(diabetes_china)

ebola_sierra_leone_data

ebola_data <- ebola_sierra_leone_data

ebola_sierra_leone_data
ebola_data

ebola_sierra_leone_data rm()

rm(ebola_sierra_leone_data)

13

Overwrite an object

Overwriting an object is like changing the contents of a bucket.

For example, previously we ran this code to store the value “Joanna” inside the
 object:

To change this to a different, simply re-run the line with a different value:

You can take a look at the Environment tab to observe the change.

Working with objects

Most of your time in R will be spent manipulating R objects. Let’s see some quick
examples.

You can run simple commands on objects. For example, below we store the value in
an object and then take the square root of the object:

R “sees” as the number 100, and so is able to evaluate it’s square root.

You can also combine existing objects to create new objects. For example, type out the
code below to add to itself, and store the result in a new object called :

What should be the value of ? First take a guess, then check it.

To check the value of an object, such as , you can type and run
just the code in the Console or the Editor. Alternatively, you can
simply highlight the value in the existing code and press

 + .

first_name

first_name <- "Joanna"

first_name <- "Luigi"

100

my_number <- 100
sqrt(my_number)

[1] 10

my_number

my_number my_sum

my_sum <- my_number + my_number

my_sum

my_sum
my_sum

my_sum
Command/Control Enter

14

But of course, most of your analysis will involve working with data objects, such as the
 object we created previously.

Let’s see a very simple example of how to interact with a data object; we will tackle it
properly in the next lesson.

To get a table of the different sex distribution of patients in the object, we
can run the following:

The dollar sign symbol, , above allowed us subset to a specific column.

Question 4

a. Consider the code below. What is the value of the object?

b. Use to make a table with the distribution of patients across districts in the
 object.

Some errors with objects

The error message tells you that these objects are not numbers and therefore cannot be
added with . This is a fairly common error type, caused by trying to do inappropriate
things to your objects. Be careful about this.

In this particular case, we can use the function to put these two objects
together:

ebola_data

ebola_data

table(ebola_data$sex)

F M
124 76

$

answer

eight <- 9
answer <- eight - 8

table()
ebola_data

first_name <- "Luigi"
last_name <- "Fenway"

full_name <- first_name + last_name

Error in first_name + last_name : non-numeric argument to binary operator

+

paste()

full_name <- paste(first_name, last_name)
full_name

15

Another error you’ll get a lot is . For example:

Here, R returns an error message because we haven’t created (or defined) the object
 yet. (Recall that R is case-sensitive.)

When you first start learning R, dealing with errors can be frustrating. They’re often
difficult to understand (e.g. what exactly does “non-numeric argument to binary
operator” mean?).

Try Googling any error messages you get and browsing through the first few results. This
will lead you to forums (e.g. stackoverflow.com) where other R learners have complained
about the same error. Here you may find explanations of, and solutions to, your problems.

Question 5

a. The code below returns an error. Why?

b. The code below returns an error. Why? (Look carefully)

Naming objects

There are only two hard things in Computer Science: cache invalidation and
naming things.

[1] "Luigi Fenway"

Error: object 'XXX' not found

my_number <- 48 # define `my_obj`
My_number + 2 # attempt to add 2 to `my_obj`

Error: object 'My_number' not found

My_obj

my_first_name <- "Kene"
my_last_name <- "Nwosu"
my_first_name + my_last_name

my_1st_name <- "Kene"
my_last_name <- "Nwosu"

paste(my_Ist_name, my_last_name)

16

— Phil Karlton.

Because much of your work in R involves interacting with objects you have created,
picking intelligent names for these objects is important.

Naming objects is difficult because names should be both short (so that you can type
them quickly) and informative (so that you can easily remember what is inside the
object), and these two goals are often in conflict.

So names that are too long, like the one below, are bad because they take forever to type.

And a name like is bad because it is not informative; the name does not give a good
idea of what the object is.

As you write more R code, you will learn how to write short and informative names.

For names with multiple words, there are a few conventions for how to separate the
words:

We recommend snake_case, which uses all lower-case words, and separates words with .

Note too that there are some limitations on objects’ names:

names must start with a letter. So is not a valid name (because it starts
with a number).

names can only contain letters, numbers, periods () and underscores (). So
 or or with a space are not valid names.

If you really want to use these characters in your object names, you can enclose the
names in backticks:

All of the above are valid R object names. For example, type and run the following code:

sample_of_the_ebola_outbreak_dataset_from_sierra_leone_in_2014

data

snake_case <- "Snake case uses underscores"
period.case <- "Period case uses periods"
camelCase <- "Camel case capitalizes new words (but not the first word)"

_

2014_data

. _
ebola-data ebola~data ebola data

`ebola-data`
`ebola~data`
`ebola data`

`ebola~data` <- ebola_data
`ebola~data`

17

But in general you should avoid using backticks to rescue bad object names. Just write
proper names.

Question 6

In the code chunk below, we are attempting to take the top 20 rows of the
table. All but one of these lines has an error. Which line will run properly?

Much of your work in R will involve calling functions.

You can think of each function as a machine that takes in some input (or arguments) and
returns some output.

So far you have already seen many functions, including, , and .
Run the lines below to refresh your memory:

Basic function syntax

The standard way to call a function is to provide a value for each argument:

ebola_data

20_top_rows <- head(ebola_data, 20)
twenty-top-rows <- head(ebola_data, 20)
top_20_rows <- head(ebola_data, 20)

Functions

sqrt() paste() plot()

sqrt(100)
paste("I am number", 2 + 2)
plot(women)

function_name(argument1 = "value", argument2 = "value")

18

Let’s demonstrate this with the function, which returns the first few elements of
an object.

To return the first three rows of the Ebola dataset, you run:

In the code above, takes in two arguments:

 , the object of interest, and

, the number of elements to return.

We can also swap the order of the arguments:

If you put the argument values in the right order, you can skip typing their names. So the
following two lines of code are equivalent and both run:

head()

head(x = ebola_data, n = 3)

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun

head()

x

n

head(n = 3, x = ebola_data)

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun

head(x = ebola_data, n = 3)

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun

head(ebola_data, 3)

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun

19

But if the argument values are in the wrong order, you will get an error if you do not type
the argument names. Below, the first line runs but the second does not run:

(To see the “correct order” for the arguments, take a look at the help file for the
function)

Some function arguments can be skipped altogether, because they have default values.

For example, with , the default value of is 6, so running just
will return the first 6 rows.

To see the arguments to a function, press the Tab key when your cursor is inside the
function’s parentheses:

Question 7

In the code lines below, we are attempting to take the top 6 rows of the dataset
(which is built into R). Which line is invalid?

(If you are not sure, just try typing and running each line. Remember that the goal here is
for you to gain some practice.)

head(n = 3, x = ebola_data)
head(3, ebola_data)

head()

head() n head(ebola_data)

head(ebola_data)

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun
4 187 NA F confirmed 2014-06-19 2014-06-24 Kailahun
5 85 20 M confirmed 2014-06-08 2014-06-24 Kailahun
6 277 30 F confirmed 2014-06-29 2014-07-01 Kenema

women

head(women)
head(women, 6)
head(x = women, 6)
head(x = women, n = 6)
head(6, women)

20

Let’s spend some time playing with another function, the function, which we
already saw above, This function is a bit special because it can take in any number of input
arguments.

So you could have two arguments:

Or four arguments:

And so on up to infinity.

And as you might recall, we can also named objects:

Functions like can take in many values because they have a
special argument, an ellipsis: If you consult the help file for the paste
function, you will see this:

Another useful argument for is called . It tells R what character to use to
separate the terms:

paste()

paste("Luigi", "Fenway")

[1] "Luigi Fenway"

paste("Luigi", "Fenway", "Luigi", "Fenway")

[1] "Luigi Fenway Luigi Fenway"

paste()

first_name <- "Luigi"
paste("My name is", first_name, "and my last name is", last_name)

[1] "My name is Luigi and my last name is Fenway"

paste()
…

paste() sep

paste("Luigi", "Fenway", sep = "-")

[1] "Luigi-Fenway"

21

Nesting functions

The output of a function can be immediately taken in by another function. This is called
function nesting.

For example, the function converts a string to lower case.

You can take the output of this and pass it directly into another function:

Without this option of nesting, you would have to assign an intermediate object:

Function nesting will come in very handy soon.

Question 8

The code chunks below are all examples of function nesting. One of the lines has an error.
Which line is it, and what is the error?

As we mentioned previously, R is wonderful because it is user extensible: anyone can
create a software package that adds new functionality. Most of R’s power comes from

tolower()

tolower("LUIGI")

[1] "luigi"

paste(tolower("LUIGI"), "is my name")

[1] "luigi is my name"

my_lowercase_name <- tolower("LUIGI")
paste(my_lowercase_name, "is my name")

[1] "luigi is my name"

sqrt(head(women))

paste(sqrt(9), "plus 1 is", sqrt(16))

sqrt(tolower("LUIGI"))

Packages

22

these packages.

In the previous lesson, you installed and loaded the {highcharter} package using the
 and functions. Let’s learn a bit more about packages

now.

A first example: the {tableone} package

Let’s now install and use another R package, called :

Note that you only need to install a package once, but you have to load it with
each time you want to use it. This means that you should generally run the

 line directly from the console, rather than typing it into your
script.

The package eases the construction of “Table 1”, i.e. a table with characteristics of the
study sample that is commonly found in biomedical research papers.

The simplest use case is summarizing the whole dataset. You can just feed in the data
frame to the argument of the main workhorse function .

install.packages() library()

tableone

install.packages("tableone")

library(tableone)

library()

install.packages()

data CreateTableOne()

CreateTableOne(data = ebola_data)

Overall
n 200
id (mean (SD)) 146.00 (82.28)
age (mean (SD)) 33.12 (17.85)
sex = M (%) 76 (38.0)
status = suspected (%) 18 (9.0)
date_of_onset (%)
2014-05-18 1 (0.5)
2014-05-20 1 (0.5)
2014-05-21 1 (0.5)
2014-05-22 2 (1.0)
2014-05-23 1 (0.5)
2014-05-24 2 (1.0)
2014-05-26 8 (4.0)
2014-05-27 7 (3.5)
2014-05-28 1 (0.5)
2014-05-29 9 (4.5)
2014-05-30 4 (2.0)
2014-05-31 2 (1.0)
2014-06-01 2 (1.0)
2014-06-02 1 (0.5)
2014-06-03 1 (0.5)
2014-06-05 1 (0.5)

23

2014-06-06 5 (2.5)
2014-06-07 3 (1.5)
2014-06-08 4 (2.0)
2014-06-09 1 (0.5)
2014-06-10 22 (11.0)
2014-06-11 1 (0.5)
2014-06-12 7 (3.5)
2014-06-13 15 (7.5)
2014-06-14 8 (4.0)
2014-06-15 3 (1.5)
2014-06-16 1 (0.5)
2014-06-17 4 (2.0)
2014-06-18 5 (2.5)
2014-06-19 8 (4.0)
2014-06-20 7 (3.5)
2014-06-21 2 (1.0)
2014-06-22 1 (0.5)
2014-06-23 2 (1.0)
2014-06-24 8 (4.0)
2014-06-25 6 (3.0)
2014-06-26 10 (5.0)
2014-06-27 9 (4.5)
2014-06-28 17 (8.5)
2014-06-29 7 (3.5)
date_of_sample (%)
2014-05-23 1 (0.5)
2014-05-25 1 (0.5)
2014-05-26 1 (0.5)
2014-05-27 2 (1.0)
2014-05-28 1 (0.5)
2014-05-29 2 (1.0)
2014-05-31 9 (4.5)
2014-06-01 6 (3.0)
2014-06-02 1 (0.5)
2014-06-03 9 (4.5)
2014-06-04 4 (2.0)
2014-06-05 1 (0.5)
2014-06-06 2 (1.0)
2014-06-07 2 (1.0)
2014-06-10 2 (1.0)
2014-06-11 4 (2.0)
2014-06-12 3 (1.5)
2014-06-13 3 (1.5)
2014-06-14 1 (0.5)
2014-06-15 21 (10.5)
2014-06-16 1 (0.5)
2014-06-17 5 (2.5)
2014-06-18 13 (6.5)
2014-06-19 9 (4.5)
2014-06-21 8 (4.0)
2014-06-22 7 (3.5)
2014-06-23 6 (3.0)
2014-06-24 6 (3.0)
2014-06-25 3 (1.5)
2014-06-27 5 (2.5)
2014-06-28 2 (1.0)

24

You can see there are 200 patients in this dataset, the mean age is 33 and 38% of the
sample of the sample is male, among other details.

Very cool! (One problem is that the package is assuming that the date variables are
categorical; because of this the output table is much too long!)

The point of this demonstration of {tableone} is to show you that there is a lot of power
in external R packages. This is a big strength of working with R, an open-source language
with a vibrant ecosystem of contributors. Thousands of people are working right now on
packages that may be helpful to you one day.

You can Google search “Cool R packages” and browse through the answers if you are
eager to learn about more R packages.

You may have noticed that we embrace package names in curly braces,
e.g. {tableone}. This is just a styling convention among R users/teachers.
The braces do not mean anything.

Full signifiers

The full signifier of a function includes both the package name and the function name:
.

So for example, instead of writing:

2014-06-29 8 (4.0)
2014-06-30 6 (3.0)
2014-07-01 4 (2.0)
2014-07-02 16 (8.0)
2014-07-03 13 (6.5)
2014-07-04 2 (1.0)
2014-07-05 2 (1.0)
2014-07-06 1 (0.5)
2014-07-08 3 (1.5)
2014-07-12 1 (0.5)
2014-07-14 1 (0.5)
2014-07-17 1 (0.5)
2014-07-21 1 (0.5)
district (%)
Bo 4 (2.0)
Kailahun 146 (73.0)
Kenema 41 (20.5)
Kono 2 (1.0)
Port Loko 2 (1.0)
Western Urban 5 (2.5)

package::function()

CreateTableOne(data = ebola_data)

25

We could write this function with its full signifier, :

You usually do not need to use these full signifiers in your scripts. But there are some
situations where it is helpful:

The most common reason is that you want to make it very clear which package a function
comes from.

Secondly, you sometimes want to avoid needing to run before
accessing the functions in a package. That is, you want to use a function from a package
without first loading that package from the library. In that case, you can use the full
signifier syntax.

So the following:

is equivalent to:

Question 9

Consider the code below:

Which of the following is a correct interpretation of what this code
means:

A. The code applies the function from the {tableone}
package on the object.

B. The code applies the argument from the {tableone}
function on the package.

C. The code applies the function from the {tableone}
package on the package.

package::function()

tableone::CreateTableOne(data = ebola_data)

library(package)

tableone::CreateTableOne(data = ebola_data)

library(tableone)
CreateTableOne(data = ebola_data)

tableone::CreateTableOne(data = ebola_data)

CreateTableOne
ebola_data

CreateTableOne
ebola_data

CreateTableOne
ebola_data

26

pacman::p_load()

Rather than use two separate functions, then , to install
then load packages, you can use a single function, , from the {pacman} package
to automatically install a package if it is not yet installed, and load the package. We
encourage this approach in the rest of this course.

Install {pacman} now by running this in your console:

From now on, when you are introduced to a new package, you can simply use,
 to both install and load the package:

Try this now for the package, which we will use soon:

Now we have a small problem. The wonderful function automatically
installs and loads packages.

But it would be nice to have some code that automatically installs the {pacman} package
itself, if it is missing on a user’s computer.

But if you put the line in a script, like so:

you will waste a lot of time. Because every time a user opens and runs a script, it will
reinstall {pacman}, which can take a while. Instead we need code that first checks
whether pacman is not yet installed and installs it if this is not the case.

We can do this with the following code:

You do not have to understand it at the moment, as it uses some syntax that you have not
yet learned. Just note that in future chapters, we will often start a script with code like
this:

The first line will install {pacman} if it is not yet installed. The second line will use
 function from {pacman} to load the remaining packages (and

 installs any packages that are not yet installed).

install.packages() library()
p_load()

install.packages("pacman")

pacman::p_load(package_name)

outbreaks

pacman::p_load(outbreaks)

pacman::p_load()

install.packages()

install.packages("pacman")
pacman::p_load(here, rmarkdown)

if(!require(pacman)) install.packages("pacman")

if(!require(pacman)) install.packages("pacman")
pacman::p_load(here, rmarkdown)

p_load()
pacman::p_load()

27

Phew! Hope your head is still intact.

Question 10

At the start of an R script, we would like to install and load the package called {janitor}.
Which of the following code chunks do we recommend you have in your script?

A.

B.

C.

With your new knowledge of R objects, R functions and the packages that functions come
from, you are ready, believe it or not, to do basic data analysis in R. We’ll jump into this
head first in the next lesson. See you there!

Answers

1. True.

2. The division sign is evaluated first.

3. The answer is C. The code gets evaluated before it is stored in the
object.

4. a. The value is 1. The code evaluates to .

b. table(ebola_data$district)

5. a. You cannot add two character strings. Adding only works for numbers.

b. is typed with the number 1 initially, but in the command,
it is typed with the letter “I”.

if(!require(pacman)) install.packages("pacman")
pacman::p_load(janitor)

install.packages("janitor")
library(janitor)

install.packages("janitor")
pacman::p_load(janitor)

Wrapping up

2 + 2 + 2

9-8

my_1st_name paste()

28

6. The third line is the only line with a valid object name:

7. The last line, , is invalid because the arguments are in the wrong
order and they are not named.

8. The third code chunk has a problem. It attempts to find the square root of a
character, which is impossible.

9. The first line, A, is the correct interpretation.

10. The first code chunk is the recommended way to install and load the package
{janitor}

Contributors

The following team members contributed to this lesson:

References

Some material in this lesson was adapted from the following sources:

“File:Apple slicing function.png.” Wikimedia Commons, the free media repository. 1
Oct 2021, 04:26 UTC. 20 Mar 2022, 17:27 <https://commons.wikimedia.org/w/index
.php?title=File:Apple_slicing_function.png&oldid=594767630>.

“PsyteachR | Data Skills for Reproducible Research.” 2021. Github.io. 2021. https://
psyteachr.github.io/reprores‑v2/index.html.

Douglas, Alex, Deon Roos, Francesca Mancini, Ana Couto, and David Lusseau. 2022.
“An Introduction to R.” Intro2r.com. January 27, 2022. https://intro2r.com/.

This work is licensed under the Creative Commons Attribution Share Alike license.

top_20_rows

head(6, women)

KENE DAVID NWOSU
Data analyst, the GRAPH Network
Passionate about world improvement

LAMECK AGASA
Statistician/Data Scientist

OLIVIA KEISER
Head of division of Infectious Diseases and Mathematical Modelling,
University of Geneva

file:///Apple
https://commons.wikimedia.org/w/index.php?title=File:Apple_slicing_function.png&oldid=594767630
https://psyteachr.github.io/reprores-v2/index.html.
https://intro2r.com/
https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://thegraphcourses.org/members/kendavidn/
https://thegraphcourses.org/members/ondieki
http://127.0.0.1:7879/NA

1

Lesson notes | Data dive: Ebola in Sierra
Leone

Created by the GRAPH Courses team

January 2023

This document serves as an accompaniment for a lesson found on https://
thegraphcourses.org.

The GRAPH Courses is a project of the Global Research and Analyses for Public Health
(GRAPH) Network, a non-profit headquartered at the University of Geneva Global Health
Institute, and supported by the World Health Organization (WHO) and other partners

https://thegraphcourses.org/

2

3

.

.
.
.

.

.

.
.
.

.
.
.
.

.
.
.

.

.

.

Introduction
Script setup

Header
Packages

Importing data into R
Intro to reproducibility
Quick data exploration

 and
Analyzing a single numeric variable

Extract a column vector with
Basic operations on a numeric variable
Visualizing a numeric variable

Analyzing a single categorical variable
Frequency tables
Visualizing a categorical variable

Answering questions about the outbreak
Haven’t had enough?
Wrapping up

vis_dat()
inspect_cat() inspect_num()

$

4

1. You can use RStudio’s graphic user interface to import CSV data into R.

2. You can explain the concept of reproducibility.

3. You can use the , and functions to get the dimensions of a
dataset, and the function to get a summary of the dataset’s variables.

4. You can use , and to obtain visual
summaries of a dataset.

5. You can inspect a numeric variable:

with the summary functions , , , , and
;

with esquisse-generated ggplot2 code.

6. You can inspect a categorical variable:

with the summary functions and ;

with the graphical functions and .

With your newly-acquired knowledge of functions and objects, you now have the basic
building blocks required to do simple data analysis in R. So let’s get started. The goal is to
start working with data as quickly as possible, even before you feel ready.

Here you will analyze a dataset of confirmed and suspected cases of Ebola hemorrhagic
fever in Sierra Leone in May and June of 2014 (Fang et al., 2016). The data is shown below:

You will import and explore this dataset, then use R to answer the following questions
about the outbreak:

When was the first case reported?
What was the median age of those affected?
Had there been more cases in men or women?
What district had had the most reported cases?
By the end of June 2014, was the outbreak growing or receding?

Learning objectives

nrow() ncol() dim()
summary()

vis_dat() inspect_num() inspect_cat()

mean() median() max() min() length()
sum()

table() janitor::tabyl()

barplot() pie()

Introduction

5

First, open a new script in RStudio with . (If you are on
RStudio, you can open up any of your previously-created projects.)

Next, save the script with or press / + to bring up
the Save File dialog box. Save the file with the name “ebola_analysis” or something similar

Empty your environment at the start of the analysis

When you start a new analysis, your R environment should usually be
empty. Verify this by opening the Environment tab; it should say
“Environment is empty”. If instead, it shows some previously-loaded
objects, it is recommended to restart R by going to the menu option

Header

Add a title, name and date to the start of the script, as code comments. This is generally
good practice for writing R scripts, as it helps give you and your collaborators context
about your script. Your header may look like this:

Packages

Next, use the function from {pacman} to load the packages you will be using.
Put this under a section header called “Load packages”, with four hyphens, as shown
below:

Script setup

File > New File > R Script

File > Save As Command Control S

Session > Restart R

Ebola Sierra Leone analysis
John Sample-Name Doe
2024-01-01

p_load()

6

Remember that the full signifier of a function includes both the package
name and the function name, . This full signifier
is handy if you want to use a function before you have loaded its source
package. This is the case in the code chunk above: we want use
from {pacman} without formally loading the {pacman} package, so we
type

We could also first load {pacman} before using the p_load function:

(Also recall that the benefit of is that it automatically installs a
package if it is not yet installed. Without , you have to first
install the package with before you can load it
with .)

Now that the needed packages are loaded, you should import the dataset.

About the Ebola dataset

The data you will be working on contains a sample of patient information
from the 2014-2016 Ebola outbreak in Sierra Leone. It comes from a
research paper which analyzed the transmission dynamics of that
outbreak. Key variables include the of a case, whether the case

Load packages ----
if(!require(pacman)) install.packages("pacman")
pacman::p_load(
 tidyverse, # meta-package
 inspectdf,
 plotly,
 janitor,
 visdat,
 esquisse
)

package::function()

p_load()

pacman::p_load()

library(pacman) # first load {pacman}
p_load(tidyverse) # use `p_load` from {pacman} to load other

packages

p_load()
p_load()

install.packages()
library()

Importing data into R

status

7

sample was taken. To learn more about these data, visit the source
publication here: bit.ly/ebola-data-source. Or search the following DOI on
DOI.org: 10.1073/pnas.1518587113.

Go to bit.ly/view-ebola-data to view the dataset you will be working on. Then click the
download icon at the top to download it to your computer.

You can leave the dataset in your downloads folder, or move it to somewhere more
respectable; the upcoming steps will work independent of where the data is stored. In the
next lesson, you will learn how to organize your data analysis projects properly, and we
will think about the ideal folder setup for storing data.

NOTE: If you are using RStudio Cloud, you need to upload your dataset to
the cloud. Do this in the “Files” tab by clicking on the “Upload” button.

Next, on the RStudio menu, go to .File > Import Dataset > From Text (readr)

https://bit.ly/ebola-data-source
https://bit.ly/view-ebola-data

8

Browse through the computer’s files and navigate to the downloaded dataset. Click to
open it. You should see an import dialog box like this:

Leave all the import settings at the default values; simply click on “Import” at the bottom;
this should load the dataset into R. You can tell this by looking at your environment pane,
which should now feature an object called “ebola_sierra_leone” or something similar:

RStudio should also have called the function on your dataset, so you should see a
familiar spreadsheet view of this data:

Now take a look at your console. Do you observe that your actions in the graphical user
interface actually triggered some R code to be run? Copy the line of code that includes
the function, leaving out the symbol.

View()

read_csv() >

9

Paste the copied code into your R script, and label this section “Load data”. This may look
something like the below (the file path inside quotes will differ from computer to
computer.

Nice work so far!

Your R script should look similar to this:

Now that the code for importing data is in your R script, you can easily rerun this script
anytime to reimport the dataset; there will be no need to redo the manual point-and-click
procedure for data import.

Try restarting R and rerunning the script now. Save your script with +
 , then restart R with the RStudio Menu, at . On RStudio Cloud,

the menu option looks like this:

Load data ----
ebola_sierra_leone <- read_csv("~/Downloads/ebola_sierra_leone.csv")

Ebola Sierra Leone analysis
John Sample-Name Doe
2024-01-01

Load packages ----
if(!require(pacman)) install.packages("pacman")
pacman::p_load(
 tidyverse,
 inspectdf,
 plotly,
 janitor,
 visdat
)

Load data ----
ebola_sierra_leone <-

read_csv("~/Downloads/ebola_sierra_leone.csv")

Intro to reproducibility

Control/Command
s Session > Restart R

10

If restarting is successful, your console should print this message:

You should also see the phrase “Environment is empty” in the Environment tab, indicating
that the dataset you imported is no longer stored by R—you are starting with a fresh
workspace.

To re-run your script, use + to highlight all the code, then
 + to run it.

If this worked, congratulations; you have the beginnings of your first “reproducible”
analysis script!

What does “reproducible” mean?

When you do things with code rather than by pointing and clicking, it is
easy for anyone to re-run, or reproduce these steps, by simply re-running
your script.

While you can use RStudio’s graphical user interface to point-and-click
your way through the data import process, you should always copy the
relevant code to your script so that your script remains a reproducible
record of all your analysis steps.

Command/Control a
Command/Control Enter

11

Of course, your script so far is not yet entirely reproducible, because the
file path for the dataset (the one that looks like this: “…intro-to-data-
analysis-with-r/ch01_getting_started/data…”) is specific to just your
computer. Later on we will see how to use relative file paths, so that the
code for importing data can work on anyone’s computer.

If your environment was not empty after restarting R, it means you
skipped a step in a previous lesson. Do this now:

In the RStudio Menu, go to to bring up
RStudio’s options dialog box.

Then go to , and uncheck the box that says
“Restore .RData into workspace at startup”.

For the option, “save your workspace to .RData on exit”, set this to
“Never”.

Now let’s walk through some basic steps of data exploration—taking a broad, bird’s eye
look at the dataset. You should put this section under a heading like “Explore data” in your
script.

Tools > Global Options

General > Basic

Quick data exploration

12

To view the top and bottom 6 rows of the dataset, you can use the and
functions:

To view the whole dataset, use the function.

This will again open a familiar spreadsheet view of the data:

You can close this tab and return to your script.

The functions , and give you the dimensions of your dataset:

head() tail()

Explore data ----
head(ebola_sierra_leone)

A tibble: 6 × 7
id age sex status date_of_onset date_of_sample
<dbl> <dbl> <chr> <chr> <date> <date>
1 92 6 M confirmed 2014-06-10 2014-06-15
2 51 46 F confirmed 2014-05-30 2014-06-04
3 230 NA M confirmed 2014-06-26 2014-06-30
4 139 25 F confirmed 2014-06-13 2014-06-18
5 8 8 F confirmed 2014-05-22 2014-05-27
6 215 49 M confirmed 2014-06-24 2014-06-29
… with 1 more variable: district <chr>

tail(ebola_sierra_leone)

A tibble: 6 × 7
id age sex status date_of_onset date_of_sample
<dbl> <dbl> <chr> <chr> <date> <date>
1 214 6 F confirmed 2014-06-24 2014-06-30
2 28 45 F confirmed 2014-05-27 2014-06-01
3 12 27 F confirmed 2014-05-22 2014-05-27
4 110 6 M confirmed 2014-06-10 2014-06-15
5 209 40 F confirmed 2014-06-24 2014-06-27
6 35 29 M suspected 2014-05-28 2014-06-01
… with 1 more variable: district <chr>

View()

View(ebola_sierra_leone)

nrow() ncol() dim()

13

If you’re not sure what a function does, remember that you can get
function help with the question mark symbol. For example, to get help on
the function, run:

Another often-helpful function is :

nrow(ebola_sierra_leone) # number of rows

[1] 200

ncol(ebola_sierra_leone) # number of columns

[1] 7

dim(ebola_sierra_leone) # number of rows and columns

[1] 200 7

ncol()

?ncol

summary()

summary(ebola_sierra_leone)

id age sex status
date_of_onset
Min. : 1.00 Min. : 1.80 Length:200 Length:200
Min. :2014-05-18
1st Qu.: 62.75 1st Qu.:20.00 Class :character Class :character
1st Qu.:2014-06-01
Median :131.50 Median :35.00 Mode :character Mode :character
Median :2014-06-13
Mean :136.72 Mean :33.85
Mean :2014-06-12
3rd Qu.:208.25 3rd Qu.:45.00
3rd Qu.:2014-06-23
Max. :285.00 Max. :80.00
Max. :2014-06-29
NA's :4
date_of_sample district
Min. :2014-05-23 Length:200
1st Qu.:2014-06-07 Class :character
Median :2014-06-18 Mode :character

14

As you can see, for numeric columns in your dataset, gives you the minimum
value, the maximum value, the mean, median and the 1st and 3rd quartiles.

For character columns it gives you just the length of the column (the number of rows),
the “class” and the “mode”. We will discuss what “class” and “mode” mean later.

The function from the {visdat} package is a wonderful way to quickly visualize
the data types and the missing values in a dataset. Try this now:

From this figure, you can quickly see the character, date and numeric data types, and you
can note that age is missing for some cases.

Mean :2014-06-17
3rd Qu.:2014-06-29
Max. :2014-07-17

summary()

vis_dat()

vis_dat()

vis_dat(ebola_sierra_leone)

https://www.mathsisfun.com/data/quartiles.html

15

 and

Next, and from the {inspectdf} package give you visual
summaries of the distribution of variables in the dataset.

If you run on the data object, you get a tabular summary of the
categorical variables in the dataset, with some information hidden in the column
(later you will learn how to extract this information).

But the magic happens when you run on the result from :

inspect_cat() inspect_num()

inspect_cat() inspect_num()

inspect_cat()
levels

inspect_cat(ebola_sierra_leone)

A tibble: 5 × 5
col_name cnt common common_pcnt levels
<chr> <int> <chr> <dbl> <named list>
1 date_of_onset 39 2014-06-10 10 <tibble>
2 date_of_sample 45 2014-06-15 9.5 <tibble>
3 district 7 Kailahun 77.5 <tibble>
4 sex 2 F 57 <tibble>
5 status 2 confirmed 91 <tibble>

show_plot() inspect_cat()

store the output of `inspect_cat()` in `cat_summary`
cat_summary <- inspect_cat(ebola_sierra_leone)

call the `show_plot()` function on that summmary.
show_plot(cat_summary)

https://psyteachr.github.io/glossary/c.html?q=categor#categorical

16

You get a wonderful figure showing the distribution of all categorical and date variables!

You could also run:

show_plot(inspect_cat(ebola_sierra_leone))

17

From this plot, you can quickly tell that most cases are in Kailahun, and that there are
more cases in women than in men (“F” stands for “female”).

One problem is that in this plot, the smaller categories are not labelled. So, for example,
we are not sure what value is represented by the white section for “status” at the bottom
right. To see labels on these smaller categories, you can turn this into an interactive plot
with the function from the {plotly} package.

Wonderful! Now you can hover over each of the bars to see the proportion of each bar
section. For example you can now tell that 9% (0.090) of the cases have a suspected
status:

ggplotly()

cat_summary_plot <- show_plot(cat_summary)
ggplotly(cat_summary_plot)

18

The assignment arrow, , can be written with the RStudio shortcut
+ (alt AND minus) on Windows or + (option AND minus) on
macOS.

You can obtain a similar plot for the numerical (continuous) variables in the dataset with
. Here, we show all three steps in one go.

This gives you an overview of the numerical columns, and . (Of course, the
distribution of the variable is not meaningful.)

You can tell that individuals aged 35 to 40 (mid-point 37.5) are the largest age group,
making up 13.8% (0.1377…) of the cases in the dataset.

Now that you have a sense of what the entire dataset looks like, you can isolate and
analyze single variables at a time—this is called univariate analysis.

Go ahead and create a new section in your script for this univariate analysis.

Let’s start by analyzing the numeric variable.

Extract a column vector with

To extract a single variable/column from a dataset, use the dollar sign, operator:

<- alt
- option -

inspect_num()

num_summary <- inspect_num(ebola_sierra_leone)
num_summary_plot <- show_plot(num_summary)
ggplotly(num_summary_plot)

age id
id

Analyzing a single numeric variable

Univariate analysis, numeric variables ----

age

$

$

ebola_sierra_leone$age # extract the age column in the dataset

[1] 6.0 46.0 NA 25.0 8.0 49.0 13.0 50.0 35.0 38.0 60.0 18.0 10.0
14.0 50.0 35.0 43.0 17.0 3.0
[20] 60.0 38.0 41.0 49.0 12.0 74.0 21.0 27.0 41.0 42.0 60.0 30.0 50.0
50.0 22.0 40.0 35.0 19.0 3.0
[39] 34.0 21.0 73.0 65.0 30.0 70.0 12.0 15.0 42.0 60.0 14.0 40.0 33.0
43.0 45.0 14.0 14.0 40.0 35.0
[58] 30.0 17.0 39.0 20.0 8.0 40.0 42.0 53.0 18.0 40.0 20.0 45.0 40.0
60.0 44.0 33.0 23.0 45.0 7.0

19

This list of values is called a vector in R. A vector is a kind of data
structure that has elements of one type. In this case, the type is
“numeric”. We will formally introduce you to vectors and other data
structures in a future chapter. In this lesson, you can take “vector” and
“variable” to be synonyms.

Basic operations on a numeric variable

To get the mean of these ages, you could run:

But it seems we have a problem. R says the mean is , which means “not applicable” or
“not available”. This is because there are some missing values in the vector of ages. (Did
you notice this when you printed the vector?) By default, R cannot find the mean if there
are missing values. To ignore these values, use the argument (which stands for “NA
remove”) setting it to , or :

Great! This need to remove the s before computing a statistic applies to many
functions. The function for example, will also return by default if it is called
on a vector with any s:

[96] 26.0 37.0 30.0 3.0 56.0 32.0 35.0 54.0 42.0 48.0 11.0 1.8 63.0
55.0 20.0 62.0 62.0 42.0 65.0
[115] 29.0 20.0 33.0 30.0 35.0 NA 50.0 16.0 3.0 22.0 7.0 50.0 17.0
40.0 21.0 9.0 27.0 52.0 50.0
[134] 25.0 10.0 30.0 32.0 38.0 30.0 50.0 26.0 35.0 3.0 50.0 60.0 40.0
34.0 4.0 42.0 NA 54.0 18.0
[153] 45.0 30.0 35.0 35.0 16.0 26.0 23.0 45.0 45.0 45.0 38.0 45.0 35.0
30.0 60.0 5.0 18.0 2.0 70.0
[172] 35.0 3.0 30.0 80.0 62.0 20.0 45.0 18.0 28.0 48.0 38.0 39.0 26.0
60.0 35.0 20.0 50.0 11.0 36.0
[191] 29.0 57.0 35.0 26.0 6.0 45.0 27.0 6.0 40.0 29.0

mean(ebola_sierra_leone$age)

[1] NA

NA

na.rm
T TRUE

mean(ebola_sierra_leone$age, na.rm = T)

[1] 33.84592

NA
median() NA

NA

median(ebola_sierra_leone$age) # does not work

20

 and are just two of many R functions that can be used to inspect a
numerical variable. Let’s look at some others.

But first, we can assign the age vector to a new object, so you don’t have to keep typing
 each time.

Now run these functions on and observe their outputs:

median(ebola_sierra_leone$age, na.rm = T) # works

[1] 35

mean median

ebola_sierra_leone$age

age_vec <- ebola_sierra_leone$age # assign the vector to the object "age_vec"

age_vec

sd(age_vec, na.rm = T) # standard deviation

[1] 17.26864

max(age_vec, na.rm = T) # maximum age

[1] 80

min(age_vec, na.rm = T) # minimum age

[1] 1.8

summary(age_vec) # min, max, mean, quartiles and NAs

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
1.80 20.00 35.00 33.85 45.00 80.00 4

length(age_vec) # number of elements in the vector

[1] 200

sum(age_vec, na.rm = T) # sum of all elements in the vector

21

Do not feel intimidated by the long list of functions! You should not have to memorize
them; rather you should feel free to Google the function for whatever operation you want
to carry out. You might search something like “what is the function for standard deviation
in R”. One of the first results should lead you to what you need.

Visualizing a numeric variable

Now let’s create a graph to visualize the age variable. The two most common graphics for
inspecting the distribution of numerical variables are histograms (like the output of the

 function you saw earlier) and boxplots.

R has built-in functions for these:

[1] 6633.8

inspect_num()

hist(age_vec)

boxplot(age_vec)

https://www.mathsisfun.com/data/histograms.html
https://www.mathsisfun.com/data/quartiles.html

22

Nice and easy!

Graphical functions like boxplot() and hist() are part of R’s base graphics package. These
functions are quick and easy to use, but they do not offer a lot of flexibility, and it is
difficult to make beautiful plots with them. So most people in the R community use an
extension package, {ggplot2}, for their data visualization.

In this course, we’ll use ggplot indirectly; by using the {esquisse} package, which provides
a user-friendly interface for creating ggplot2 plots.

The workhorse function of the {esquisse} package is , and this function
takes a single argument—the dataset you want to visualize. So we can run:

This should bring a graphic user interface that you can use to plot different variables. To
visualize the age variable, simply drag from the list of variables into the x axis box:

When is in the x axis box, you should automatically get a histogram of ages:

esquisser()

esquisser(ebola_sierra_leone)

age

age

23

You can change the plot type by clicking on the “Histogram” button and selecting one of
the other valid plot types. Try out the boxplot, violin plot and density plot and observe the
outputs.

When you are done creating a plot with {esquisse}, you should copy the code that was
created by clicking on the “Code” button at the bottom right then “Copy to clipboard”:

24

Now, paste that code into your script, and make sure you can run it from there. The code
should look something like this:

By copying the generated code into your script, you ensure that the data visualization you
created is fully reproducible.

{esquisse} can only create fairly simple graphics, so when you want to
make highly customized or complex plots, you will need to learn how to
write {ggplot} code manually. This will be the focus of a later course.

You should also test out the other tabs on the bottom toolbar to see what they do: Labels
& Title, Plot options, Appearance and Data.

Easy bivariate and multivariate plots

In this lesson we are focusing on univariate analysis: exploring and
visualizing one variable at a time. But with esquisse; it is so easy to make
a bivariate or multivariate plot, so you can already get your feet wet with
this.

Try the following plots:

ggplot(ebola_sierra_leone) +
 aes(x = age) +
 geom_histogram(bins = 30L, fill = "#112446") +
 theme_minimal()

25

Drag to the X box and to the Y box.

Drag to the X box, to the Y box, and to the fill box.

Drag to the X box and to the Y box.

Next, let’s look at a categorical variable, the districts of reported cases:

age sex

age sex sex

age district

Analyzing a single categorical variable

Univariate analysis, categorical variables ----
ebola_sierra_leone$district

[1] "Kailahun" "Kailahun" "Kenema" "Kailahun"
"Kailahun" "Kailahun"
[7] "Kailahun" "Kailahun" "Kenema" "Kailahun"
"Kailahun" "Kailahun"
[13] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
"Kailahun" "Kenema"
[19] "Kono" "Kailahun" "Kailahun" "Kailahun"
"Kenema" "Kailahun"
[25] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
"Kenema" "Kenema"
[31] "Kenema" "Kailahun" "Kailahun" "Bo"
"Kailahun" "Kailahun"
[37] "Kailahun" "Kenema" "Kenema" "Kenema"
"Kailahun" "Kailahun"
[43] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
"Western Urban" "Kailahun"
[49] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
"Kailahun" "Kailahun"
[55] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
"Kailahun" "Kailahun"
[61] "Kailahun" "Kenema" "Western Urban" "Kambia"
"Kailahun" "Kailahun"
[67] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
"Kailahun" "Kailahun"
[73] "Kenema" "Kailahun" "Kailahun" "Kenema"
"Kailahun" "Kailahun"
[79] "Kenema" "Kailahun" "Kailahun" "Kailahun"
"Kailahun" "Kailahun"
[85] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
"Kailahun" "Kenema"
[91] "Kailahun" "Kailahun" "Kailahun" "Kono"
"Port Loko" "Kenema"
[97] "Kailahun" "Kailahun" "Kailahun" "Kailahun"

26

Sorry for printing that very long vector!

Frequency tables

You can use the function to create a frequency table of a categorical variable:

You can see that most cases are in Kailahun and Kenema.

"Kenema" "Kailahun"
[103] "Kailahun" "Kenema" "Kailahun" "Kailahun"
"Kailahun" "Kailahun"
[109] "Kailahun" "Kailahun" "Kenema" "Western Urban"
"Kailahun" "Kailahun"
[115] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
"Kailahun" "Kailahun"
[121] "Kailahun" "Kailahun" "Kenema" "Kailahun"
"Kailahun" "Kenema"
[127] "Kailahun" "Port Loko" "Kailahun" "Kailahun"
"Kailahun" "Kailahun"
[133] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
"Kailahun" "Kailahun"
[139] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
"Kailahun" "Kenema"
[145] "Kenema" "Kailahun" "Kenema" "Kailahun"
"Kailahun" "Kailahun"
[151] "Kailahun" "Kailahun" "Kenema" "Kailahun"
"Kailahun" "Kenema"
[157] "Kailahun" "Kenema" "Kailahun" "Kailahun"
"Kenema" "Kailahun"
[163] "Kailahun" "Kailahun" "Kailahun" "Bo"
"Kailahun" "Kailahun"
[169] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
"Kenema" "Kailahun"
[175] "Kailahun" "Kenema" "Kailahun" "Kailahun"
"Kailahun" "Kailahun"
[181] "Kailahun" "Kailahun" "Kailahun" "Western Urban"
"Kailahun" "Kailahun"
[187] "Kenema" "Kailahun" "Kailahun" "Kailahun"
"Kailahun" "Kailahun"
[193] "Kailahun" "Kenema" "Kenema" "Kailahun"
"Kailahun" "Kailahun"
[199] "Kailahun" "Kenema"

table()

table(ebola_sierra_leone$district)

Bo Kailahun Kambia Kenema Kono
Port Loko Western Urban
2 155 1 34 2
2 4

27

 is auseful “base” function. But there is a better function for creating frequency
tables, called , from the {janitor} package.

To use it, you supply the name of your data frame as the first argument, then the name of
variable to be tabulated:

As you can see, gives you both the counts and the percentage proportions of
each value. It also has some other attractive features you will see later.

You can also easily make cross-tabulations with . Simply add
additional variables separated by a comma. For example, to create a
cross-tabulation by district and sex, run:

The output shows us that there were 0 women in the Bo district, 2 men in
the Bo district, 91 women in the Kailahun district, and so on.

Visualizing a categorical variable

Now, let’s try to visualize the variable. As before, the best way to do this is with
the function from {esquisse}. Run this code again:

table()
tabyl()

tabyl(ebola_sierra_leone, district)

district n percent
Bo 2 0.010
Kailahun 155 0.775
Kambia 1 0.005
Kenema 34 0.170
Kono 2 0.010
Port Loko 2 0.010
Western Urban 4 0.020

tabyl()

tabyl()

tabyl(ebola_sierra_leone, district, sex)

district F M
Bo 0 2
Kailahun 91 64
Kambia 0 1
Kenema 20 14
Kono 0 2
Port Loko 1 1
Western Urban 2 2

district
esquisser()

28

Then drag the variable to the X axis box:

You should get a bar chart showing the count of individuals across districts. Copy the
generated code and paste it into your script.

With the functions you have just learned, you have the tools to answer the questions
about the Ebola outbreak that were listed at the top. Give it a go. Attempt these
questions on your own, then look at the solutions below.

When was the first case reported? (Hint: look at the date of sample)
As at the end of June 2014, which 10-year age group had had the most cases?
What was the median age of those affected?
Had there been more cases in men or women?
What district had had the most reported cases?
By the end of June 2014, was the outbreak growing or receding?

Solutions

When was the first case reported?

We don’t have the date of report, but the first “date_of_sample” (when the Ebola test
sample was taken from the patient) is May 23rd. We can use this as a proxy for the date
of first report.

esquisser(ebola_sierra_leone)

district

Answering questions about the outbreak

min(ebola_sierra_leone$date_of_sample)

[1] "2014-05-23"

29

What was the median age of cases?

The median age of cases was 35.

Are there more cases in men or women?

As seen in the table, there were more cases in women. Specifically, 57% of cases are of
women.

What district has had the most reported cases?

median(ebola_sierra_leone$age, na.rm = T)

[1] 35

tabyl(ebola_sierra_leone$sex)

ebola_sierra_leone$sex n percent
F 114 0.57
M 86 0.43

tabyl(ebola_sierra_leone$district)

ebola_sierra_leone$district n percent
Bo 2 0.010
Kailahun 155 0.775
Kambia 1 0.005
Kenema 34 0.170
Kono 2 0.010
Port Loko 2 0.010
Western Urban 4 0.020

We can also plot the following chart (generated with esquisse)
ggplot(ebola_sierra_leone) +
 aes(x = district) +
 geom_bar(fill = "#112446") +
 theme_minimal()

30

As seen, the Kailahun district had the majority of cases.

By the end of June 2014, was the outbreak growing or receding?

For this, we can use esquisse to generate a bar chart that shows a count of cases in each
day. Simply drag the variable to the x axis. The output code from
esquisse should resemble the below:

date_of_onset

ggplot(ebola_sierra_leone) +
 aes(x = date_of_onset) +
 geom_histogram(bins = 30L, fill = "#112446") +
 theme_minimal()

31

Great! But it is debatable whether the outbreak was growing or receding at the end of
June 2014; a precise trend is not really clear!

If you would like to practice some of the methods and functions you learned on a similar
dataset, try downloading the data that is stored on this page: https://bit.ly/view‑yaounde
‑covid‑data

That dataset is in the form of an Excel spreadsheet, so when you are importing the
dataset with RStudio, you should use the “From Excel” option (File > Import Dataset >
From Excel).

This dataset contains the results of a COVID-19 serological survey conducted in Yaounde,
Cameroon in late 2020. The survey estimated how many people had been infected with
COVID-19 in the region, by testing for IgG and IgM antibodies. The full dataset can be
obtained from here: go.nature.com/3R866wx

Congratulations! You have now taken your first baby steps in analyzing data with R: you
imported a dataset, explored its structure, performed basic univariate analysis and
visualization on its numeric and categorical variables, and you were able to answer
important questions about the outbreak based on this.

Of course, this was only a sneak peek of the data analysis process—a lot was left out.
Hopefully, though, this sneak peek has gotten you a bit excited about what you can do
with R. And hopefully, you can already start to apply some of these to your own datasets.
The journey is only beginning! See you soon.

The following team members contributed to this lesson:

Haven’t had enough?

Wrapping up

Contributors

KENE DAVID NWOSU
Data analyst, the GRAPH Network
Passionate about world improvement

https://bit.ly/view-yaounde-covid-data
https://go.nature.com/3R866wx
https://thegraphcourses.org/members/kendavidn/

32

Some material in this lesson was adapted from the following sources:

Barnier, Julien. “Introduction à R Et Au Tidyverse.” Partie 13 Diffuser et publier avec
rmarkdown, May 24, 2022. https://juba.github.io/tidyverse/13‑rmarkdown.html.

Yihui Xie, J. J. Allaire, and Garrett Grolemund. “R Markdown: The Definitive Guide.”
Home, April 11, 2022. https://bookdown.org/yihui/rmarkdown/.

This work is licensed under the Creative Commons Attribution Share Alike license.

References

https://juba.github.io/tidyverse/13-rmarkdown.html
https://bookdown.org/yihui/rmarkdown/
https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/3.0/

1

Lesson notes | RStudio projects

Created by the GRAPH Courses team

January 2023

This document serves as an accompaniment for a lesson found on https://
thegraphcourses.org.

The GRAPH Courses is a project of the Global Research and Analyses for Public Health
(GRAPH) Network, a non-profit headquartered at the University of Geneva Global Health
Institute, and supported by the World Health Organization (WHO) and other partners

https://thegraphcourses.org/

2

3

.
.
.
.
.
.
.
.
.
.
.
.

Getting started: RStudio projects
Learning objectives
Introduction
Creating a new RStudio Project
Creating Project subfolders
Adding a dataset to the “data” folder
Creating a script in the “scripts” folder
Importing data from the “data” folder
Exporting data to the “outputs” folder
Exporting plots to the “outputs” folder
Sharing a Project
Wrapping up

Learning objectives

1. You can set up an RStudio Project and create sub-directories for input data, scripts
and analytic outputs.

2. You can import and export data within an RStudio Project.

3. You understand the difference between relative and absolute file paths.

4. You recognize the value of Projects for organizing and sharing your analyses.

Introduction

Previously, you walked through some of the essential steps of data analysis, from
importing data to calculating basic statistics. But you skipped over one crucial step:
setting up a data analysis project.

Experienced data analysts keep all the files associated with a specific analysis—input data,
R scripts and analytic outputs—together in a single folder. These folders are called
projects (small p), and RStudio has built-in support for them via RStudio Projects (capital
P).

In this lesson you will learn how to use these RStudio Projects to organize your data
analysis coherently, and improve the reproducibility of your work. You will replicate some
of the analysis you did in the last data dive lesson, but in the context of an RStudio
Project.

Let’s get started.

Getting started: RStudio projects

4

Creating a new RStudio Project

Creating a new RStudio Project looks different if you are on a local computer and if you
are on RStudio Cloud. Jump to the section that is relevant for you.

On RStudio Cloud

If you are using RStudio Cloud, you have probably already created a project, because you
can’t do any analysis without projects.

The steps are pretty simple: go to your Cloud homepage, rstudio.cloud, and click on the
“New Project” button.

Name your Project something like or if you
already have a project named .

The RStudio Project you have now created is just a folder on a virtual computer, which has
a .Rproj file within it (and maybe a .RHistory file). You should be able to see this .Rproj file
in the Files pane of RStudio:

The .RProj file is what turns a regular computer folder into an “RStudio
Project”.

ebola_analysis ebola_analysis_proj
ebola_analysis

https://rstudio.cloud/

5

On a local computer

If you are on a local computer, open RStudio, then on the RStudio menu, go to
. Your options may look a little different from the screenshots below

depending on your operating system.

Choose “New directory”

Then choose “New Project”:

You can call your Project something like “ebola_analysis” and make it a “subdirectory” of a
folder that is easy to find, such as your desktop. (The phrase “Create project as
subdirectory of” sounds scary, but it’s not; RStudio is simply asking: “where should I put
the project folder”?)

File >
New Project

6

The RStudio Project you have created is just a folder with a .Rproj file within it (and maybe
a .RHistory file). You should be able to see this .Rproj file in the Files pane of RStudio:

Click on the .Rproj file to open your project

The .RProj file is what turns a regular computer folder into an “RStudio
Project”.

From now on, to open your project, you should double click on this .RProj
file from your computer’s Finder/File Explorer.

On Windows, here is an example of what a .Rproj file will look like from
the File Explorer:

7

On macOS, here is an example of what a .Rproj file will look like from
Finder:

Note also that there is a header at the top right of RStudio window that tells you which
Project you currently have open. Clicking on this gives you some additional Project
options. You can create a new project, close a project and open recent projects, among
other options.

Creating Project subfolders

Data analysis projects usually have at least three sub-folders: one for data, another for
scripts, and a third for outputs, as seen below:

8

Let’s look at the sub-folders one by one:

data: This contains the source (raw) data files that you will use in the analysis.
These could be CSV or Excel files, for example.

scripts: This sub-folder is where you keep your R scripts. You can also save
RMarkdown files in this folder. (You will learn about RMarkdown files soon.)

outputs: Here, you save the outputs of your analysis, like plots and summary tables.
These outputs should be disposable and reproducible. That is, you should be able to
regenerate the outputs by running the code in your scripts. You will understand this
better soon.

Now go ahead and create these three sub-folders, “data”, “scripts” and “outputs”. within
your RStudio Project folder. You should use the “New Folder” button on the RStudio Files
pane to do this:

Adding a dataset to the “data” folder

Next, you should move the Ebola dataset you downloaded in the previous lesson to the
newly-created “data” sub-folder (you can re-download that dataset at bit.ly/ebola-data if
you can’t find where you stored it).

The procedure for moving this dataset to the “data” folder is different for RStudio Cloud
users and those using a local computer. Jump to the section that is relevant for you.

https://bit.ly/ebola-data

9

On RStudio Cloud

If you are on RStudio Cloud, adding the dataset to your “data” folder is straightfoward.
Simply navigate to the folder within the Files pane, then click the “Upload” button:

This will bring up a dialog box where you can select the file for upload.

On a local computer

On a local computer, this step has to be done with your computer’s File Explorer/Finder.

First, locate the Project folder with your computer’s File Explorer/Finder. If you’re
having trouble locating this, RStudio can help: go to the “Files” tab, click on “More”
(the gear icon), then click “Show Folder in New Window”.

This will bring you to the Project folder in your computer’s File Explorer/Finder.

Now, move the Ebola dataset you downloaded in the previous lesson to the newly-
created “data” sub-folder.

10

Here is what moving the file might look like on macOS:

Creating a script in the “scripts” folder

Next, create and save a new R script within the “scripts” folder. You can call this
“main_analysis” or something similar. To create a new R script within a folder, first
navigate to that folder in the Files pane, then click the “New Blank File” button and select
“R script” in the dropdown:

Note that this is different from what you have done so far when creating
a new script (before, you used the menu option,

). The old way is still valid; but this “New Blank File” button
will probably be faster for you.

Great work so far! Now your Project folder should have the structure shown below, with
the “ebola_sierra_leone.csv” dataset in the “data” folder and the “main_analysis.R” script
(still empty) in the “scripts” folder:

File > New File >
New Script

11

This is a process you should go through at the start of every data analysis project: set up
an RStudio Project, create the needed sub-folders, and put your datasets and scripts in
the appropriate sub-folders. It can be a bit painful, but it will pay off in the long run.

The rest of this lesson will teach you how to conduct your analysis in the context of this
folder setup. At the end, you will have an overall flow of data and outputs that resembles
the diagram below:

12

Figure: Data flow in an R project. Scripts in the “scripts” folder import data from “data”
folder and export data and plots to the “outputs” folder

You should refer back to this diagram as you proceed through the sections below to help
orient yourself.

Importing data from the “data” folder

We will use the code snippet below to demonstrate the flow of data through a Project.
Copy and paste this snippet into your “main_analysis.R” script (but don’t run it yet). The
code replicates parts of the analysis from the data dive lesson.

13

First run the “Load packages” section to install and/or load any needed packages.

Then proceed to the “Load data” section, which looks like this:

Here you want to import the Ebola dataset that you previously placed inside the Project’s
“data” folder. To do this, you need to supply the file path of that dataset as the first
argument of .

Because you are using an RStudio Project, this path can be obtained very easily: place
your cursor inside the quotation marks within the function, and press the

 key on your keyboard. You should see a list of the sub-folders available in your Project.
Something like this:

Ebola Sierra Leone analysis
John Sample-Name Doe
2024-01-01

Load packages ----
if(!require(pacman)) install.packages("pacman")
pacman::p_load(
 tidyverse,
 janitor,
 inspectdf,
 here # new package we will use soon
)

Load data ----
ebola_sierra_leone <- read_csv("") # DATA PENDING! WE WILL UPDATE THIS BELOW.

Cases by district ----
district_tab <- tabyl(ebola_sierra_leone, district)
district_tab

Visualize categorical variables ----
categ_vars_plot<- show_plot(inspect_cat(ebola_sierra_leone))
categ_vars_plot

Visualize numeric variables ----
num_vars_plot <- show_plot(inspect_num(ebola_sierra_leone))
num_vars_plot

Load data ----
ebola_sierra_leone <- read_csv("") # DATA PENDING! WE WILL UPDATE THIS BELOW.

read_csv()

read_csv()
Tab

14

Click on the “data” folder, then press again. Since you only have one file in the “data”
folder, RStudio should automatically fill in it’s name. You should now see:

Wonderful! Run this line of code now to import the data.

If this is successful, you should see the data appear in the Environment tab of RStudio:

Relative paths

The path you have used here, “data/ebola_sierra_leone.csv”, is called a
relative path, because it is relative to the root (or the base) of your
Project.

How does R know where the root of your Project is? That’s where the
.RProj file comes in. This file, which lives in the “ebola_analysis” folder tells
R “here! Here! I am in the ‘ebola_analysis’ folder so this must be the
root!”. Thus, you only need to specify path components that are deeper
than this root.

RStudio Projects, and the relative paths they allow you to use, are
important for reproducibility. Projects that use relative paths can be run
on anyone’s computer, and the importing and exporting code should
work without any hiccups. This means that you can send someone an
RStudio Project folder and the code should run on their machine just as it
ran on yours!

This would not be the case if you were to use an absolute path,
something like
“~/Desktop/my_data_analysis/learning_r/ebola_sierra_leone.csv”, in your

Tab

ebola_sierra_leone <- read_csv("data/ebola_sierra_leone.csv")

15

script. Absolute paths give the full address of a file, and will not usually
work on someone else’s computer, where files and folders will be
arranged differently.

Note that if you are using RStudio Cloud, you are forced to use relative
paths, because you cannot access the general file system of the virtual
computer; you can only work within specific Project folders.

Using

As you have now seen, RStudio Projects simplify the data import process and improve the
reproducibility of your analysis, primarily because they allow you to use relative paths.

But there is one more step we recommend when using relative paths: rather than leave
your path naked, wrap it in the function from the {here} package.

So, in the data import section of your script, change ’s input from
 to :

What is the point of wrapping the path in ? Well, technically, this is no real point in
doing this in an R script; the importing code works fine without it. But it will be necessary
when you start using RMarkdown scripts (which you will soon be introduced to), because
paths not wrapped in are problematic in the RMarkdown context.

So to keep things consistent, we always recommend you use when pointing to
paths, whether in an R script or an RMarkdown script

Exporting data to the “outputs” folder

Importing data is not the only benefit of RStudio Projects; data export is also streamlined
when you use Projects. Let’s look at this now.

In the “Cases by district” section of your script, you should have:

Run this code now; you should get the following tabular output:

here::here()

here()

read_csv()
"data/ebola_sierra_leone.csv" here("data/ebola_sierra_leone.csv")

ebola_sierra_leone <- read_csv(here("data/ebola_sierra_leone.csv"))

here()

here()

here()

Cases by district ----
district_tab <- tabyl(ebola_sierra_leone, district)
district_tab

16

Now, imagine that you want to export this table as a CSV. It would be nice if there was a
specific folder designated for such exports. Well, there is! It’s the “outputs” folder you
created earlier. Let’s export your table there now. Type out the code below (but don’t run
it yet):

With the function, you are going to “write” (or “save”) the
table as a CSV file.

The argument of takes in the object to be saved (in this case
). And the argument takes in the target file path. This target file path

can be a simple relative path: “outputs/district_table.csv”. (And, as mentioned before, we
should wrap the path in .) Type this up and run it now:

The path “outputs/district_table.csv” tells to save the plot as a CSV file
named “districts_table” in the “outputs” folder of the Project.

You can replace “district_table.csv” with any other appropriate name, for
example “freq table across districts.csv”:

Great work! Now, if you go to the Files tab and navigate to the outputs folder of your
Project, you should see this newly created file:

district n percent
Bo 2 0.010
Kailahun 155 0.775
Kambia 1 0.005
Kenema 34 0.170
Kono 2 0.010
Port Loko 2 0.010
Western Urban 4 0.020

write_csv(x = district_tab, file = "")

write_csv() district_tab

x write_csv()
district_tab file

here()

write_csv(x = district_tab, file = here("outputs/district_table.csv"))

write_csv()

write_csv(x = district_tab, file = here("outputs/freq table
across districts.csv"))

17

You can click on the file to view it within RStudio as a raw CSV:

This should bring up an RStudio viewer window:

If you instead want to view the CSV in Microsoft Excel, you can navigate to the same file in
your computer’s Finder/File Explorer and double-click on it from there.

To locate your Project folder in your computer’s Finder/File Explorer, go
the “Files” tab, click on the gear icon, then click “Show Folder in New
Window”.

18

If you are on RStudio cloud, then you won’t be able to view the CSV in
Microsoft Excel until you have “exported” it. Use the “Export” menu
option in the Files tab. If this is not immediately visible, click on the gear
icon to bring up “More” options, then scroll through to find the “Export”
option.

Overwriting data

If you need to update the output CSV, you can simply rerun the function
with the updated data object.

To test this, replace the “Cases by district” section of your script with the following code.
It uses the function to arrange the table in order of the number of cases, :

(means “sort in descending order of the variable”; we will introduce you to the
arrange function properly later on.)

The output should be:

write_csv()

arrange() n

Cases by district ----
district_tab <- tabyl(ebola_sierra_leone, district)
district_tab_arranged <- arrange(district_tab, -n)
district_tab_arranged

-n n

19

You can now overwrite the old “district_table.csv” file by re-running the write_csv function
with the object:

To verify that the dataset was actually updated, observe the “Modified” time stamp in the
RStudio Files pane:

Exporting plots to the “outputs” folder

Finally, let’s look at plot exporting in the context of an RStudio Project.

In the “Visualize categorical variables” section of your script, you should have:

Running these code lines should give you this output:

district n percent
Kailahun 155 0.775
Kenema 34 0.170
Western Urban 4 0.020
Bo 2 0.010
Kono 2 0.010
Port Loko 2 0.010
Kambia 1 0.005

district_tab

write_csv(x = district_tab_arranged, file =
here("outputs/district_table.csv"))

Visualize categorical variables ----
categ_vars_plot<- show_plot(inspect_cat(ebola_sierra_leone))
categ_vars_plot

20

Below these lines, type up the command below (but don’t run it yet):

This command uses the function to export the figure. The
 argument of takes in the object to be saved (in this case

), and the argument takes in the target file path for the
plot.

As you saw when exporting data, this target file path is quite simple because you are
working in an RStudio Project. In this case, you have:

Run this command now. The path “outputs/categorical_plot.png” tells
 to save the plot as a PNG file named “categorical_plot” in the “outputs” folder

of the Project.

To see this newly-saved plot, navigate to the Files tab. You can click on it to open it with
your computer’s default image viewer:

ggsave()

ggsave(filename = "", plot = categ_vars_plot)

ggsave() categ_vars_plot
plot ggsave()
categ_vars_plot filename

ggsave(filename = "outputs/categorical_plot.png", plot = categ_vars_plot)

ggsave()
ggsave()

21

Also note that the the function lets you save plots to multiple image formats.
For example, you could instead write:

to save the plot as a PDF. Run to see what other formats are possible.

Now let’s export the second plot, the numerical summary. In the section of your script
called “Visualize numeric variables”, you should have:

Running these code lines should give you this output:

ggsave()

ggsave(filename = "outputs/categorical_plot.pdf", plot = categ_vars_plot)

?ggsave

Visualize numeric variables ----
num_vars_plot <- show_plot(inspect_num(ebola_sierra_leone))
num_vars_plot

22

To export this plot, type up and run the following code:

Wonderful!

Sharing a Project

Projects are also great for sharing your analysis with collaborators.

You can zip up your Project folder and send it to a colleague through email or through a
file sharing service like Dropbox. The colleague can then unzip the folder, click on the
.Rproj file to open the Project in RStudio, and re-do and edit all your analysis steps.

This is a decent setup, but sending projects back and forth may not be ideal for long-term
collaboration. So experienced analysts use a technology called git to collaborate on
projects. But this topic is a bit too advanced for this course; we will cover it in detail in a
future course. If you are impatient, you can check out this book chapter: https://intro2r
.com/github_r.html

Wrapping up

Congratulations! You now know how to set up and use RStudio Projects!

Hopefully you see the value of organizing your analysis scripts, data and outputs in this
way. Projects are a coherent way to structure your analyses, and make it easy to revisit,
revise and share your work. They will be the foundation for much of your work as a data
analyst going forward.

That’s it for now. See you in the next lesson.

Contributors

The following team members contributed to this lesson:

References

Some material in this lesson was adapted from the following sources:

Wickham, H., & Grolemund, G. (n.d.). R for data science. 8 Workflow: projects | R for
Data Science. Retrieved May 31, 2022, from https://r4ds.had.co.nz/workflow‑projects
.html

ggsave(filename = "outputs/numeric_plot.png", plot = num_vars_plot)

KENE DAVID NWOSU
Data analyst, the GRAPH Network
Passionate about world improvement

https://intro2r.com/github_r.html
https://r4ds.had.co.nz/workflow-projects.html
https://thegraphcourses.org/members/kendavidn/

23

This work is licensed under the Creative Commons Attribution Share Alike license.

https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/3.0/

1

Lesson notes | R Markdown

Created by the GRAPH Courses team

April 2023

This document serves as an accompaniment for a lesson found on https://
thegraphcourses.org.

The GRAPH Courses is a project of the Global Research and Analyses for Public Health
(GRAPH) Network, a non-profit headquartered at the University of Geneva Global Health
Institute, and supported by the World Health Organization (WHO) and other partners

https://thegraphcourses.org/

2

3

.

.

.

.

.

.
.

.
.
.
.
.
.
.
.

Introduction
Project setup
Create a new document
Rmarkdown Header (YAML)
Visual vs Source mode
Markdown syntax

Customizing the generated document
R code chunks

Chunk output inline vs in condole
R code chunk options
Inline Code
Display tables
Document Templates
Resources
Example analysis in Rmarkdown

The {rmarkdown} package allows you to dynamically generate documents by mixing
formatted text and results produced by R code. The generated documents can be in
HTML, PDF, Word, and many other formats. It is therefore a very practical tool for
exporting, communicating and disseminating analysis results.

There is a whole book on Rmarkdown, so we can only cover some of the essentials here.

This document was itself generated from R Markdown files.

You can create and knit an Rmarkdown document containing code and free text.
You can output documents to multiple formats including HTML, PDF, Word,
Powerpoint and flexdashboards.
You understand basic markdown syntax.
You can use R chunk options, including eval, echo, and message.
You know the syntax for in-line R code.
You recognize some useful packages for table formatting in Rmarkdown.
You understand how to use the {here} package to force Rmarkdown files to use the
project folder as the working directory.

Introduction

Learning objectives

4

In RStudio, click on the File menu, and select New Project…. Then click on New Directory.
Give your project a name, and select a directory into which to place it. (Make sure you
remember where you put it!) Once you have these fields filled out, click Create Project.

Next we’re going to set up some folders inside the project. Go to the Files pane, and click
on New Folder. Name this one “data”, and click OK. This is where you will put the data
related to this project. Create one more called “rmd”. R Markdown documents will go
here.

An R Markdown document is a simple text file saved with the extension.

In RStudio, you can create a new document by going to the File menu then choosing New
file then R Markdown…. The first time you create an R Markdown document, you may be
asked to install several packages. Go ahead and install those. Once RStudio has the
appropriate packages, the following dialog box appears :

For now, you can leave all the default values and click OK. A file with sample content is
then displayed.

Try editing some of the text in the file. Notice that is made up of some free text and some
code sections.

Project setup

Create a new document

.Rmd

5

Save your file with + , remembering to give it the extension “.Rmd”. E.g.
“ebola_analysis.Rmd”. Be sure to save it in the “rmd” folder you just created.

You can now try rendering the document by clicking on the “knit” button at the top right:

This will create an HTML output that looks like this:

This new rendered file is stored in the same directory as your Rmd. It has the same name,
except it ends with “.html” instead of “.rmd”.

HTML stands for Hyper text markup language and is the format that is
used for most documents on the web.

Cmd/Ctrl S

6

Now let’s return to the rest of the Rmd to consider it part by part.

The first part of the document is its *header*. (It is also called “YAML”, which stands for
“Yet another markup language”.) (The name is intended to be humorous.)

The YAML header must be located at the very beginning of the document, delimited by
three dashes (`---`) before and after.

This header contains the document’s metadata, such as its title, author, date, plus a whole
host of possible options that will allow you to configure or customize the entire document
and its rendering. Here, for example, the line `output: html_document` indicates that the
generated document must be in HTML format.

We can change the text to try out some other formats.

First you can make so

With the output set to “word_document”, we get something like this:

Rmarkdown Header (YAML)

title: "Untitled"
output: html_document
date: "2022-10-09"

html_document

7

Image of the r markdown document open in the Microsoft Word program

Note that this creates a “.docx” version of our document in the “rmd” folder.

With the output set to “powerpoint_document”, it comes out like this:

8

Image of the r markdown document open in the Microsoft Powerpoint program

If we change the output setting to “pdf_document”, we can get the same document in
PDF format (for this you may be prompted to install tinytex on your computer, see
below):

For PDF generation, you must have a working installation on your
system. If not, Yihui Xie’s extension aims to make it easier to
install a minimal distribution regardless of your machine’s

LaTeX
tinytex

LaTeX

9

operating system. To use it, you must first install the extension with
, then run the following command in

the console (expect a download of about 200MB):
 More information on the tinytex

website.

There is also a file format called “prettydoc”. To try this out, type
 into the console and hit enter. The output format

for prettydoc is a little different than the previous three we’ve seen, you need to type
 in the section. When you knit a prettydoc, you should

see something like this:

Image of the r markdown document as a prettydoc

We can even get a simple dashboard format. First we need to
 . Then if we set the to

, and knit, we get something like the following:

install.packages('tinytex')

tinytex::install_tinytex()

install.packages('prettydoc')

prettydoc::html_pretty output

install.packages('flexdashboard') output
flexdashboard::flex_dashboard

https://yihui.name/tinytex/

10

Image of the r markdown document as a flexdashboard

Note that it does not yet have tabs. To create tabs in a flexdashboard, change some of
your double hashtags to single hashtags . This will change the header style for those
sections, and get flexdashboard to render those headers as tabs instead.

Many other formats are possible, and we encourage you to explore on your own!

Rmarkdown documents can be edited in either a “Source” mode or a “Visual” mode.

You can switch into visual mode for a given document using the toolbars. For older
RStudio versions, you may have an button at the top-right of the document toolbar

For newer RStudio versions, there is a pair of buttons to toggle between the modes:

#

Visual vs Source mode

A

11

What’s the difference between these two modes?

In source mode you see the raw markdown syntax.

Markdown is a simple set of conventions for adding formatting to plain
text. For example, to italicize text, you wrap it in as asterisk

, and to start a new header, you use the pound sign . We will learn
these in detail below

But in visual mode, you instead see a Microsoft-word like WYSIWIG view:

with a toolbar for easy formatting:

*text
here* #

12

That means you do not have remember the syntax for markdown elements. For example,
if you want to make a section of text bold, you can simply highlight that piece of text and
click on the bold button in the toolbar.

Now, while visual mode is much easier to use, we will teach you markdown syntax here for
three reasons:

Visual mode is sometimes a buggy experience, and to debug this you’ll need to
switch to source mode

Understandin markdown syntax is useful outside of Rmarkdown

Visual mode is not available in RStudio’s collaborative mode, which you may make
use of

In the “Help” tab, if you look up “Markdown Quick Reference”, you will be able to find a
wide variety of RMD options available to you.

You can define titles of different levels by starting a line with one or more :

The body of the document consists of text that follows the Markdown syntax. A
Markdown file is a text file that contains lightweight markup that helps set heading levels
or format text. For example, the following text:

Will generate the following formatted text:

This is text with italics and bold.

You can define bulleted lists:

first element
second element

Markdown syntax

#

Level 1 title
Level 2 Title
Level 3 Title

This is text with *italics* and **bold**.

You can define bulleted lists:

- first element
- second element

13

Note that you need spaces before and after lists, as well as keeping the listed items on
separate lines, or else they will all crunch together rather than making a list.

We see that words placed between asterisks are italicized, lines that begin with a dash are
transformed into a bulleted list, etc.

The Markdown syntax allows for other formatting, such as the ability to insert links or
images. For example, the following code:

… will give the following link:

Example Link

We can also embed images. If you’re in Source mode, type:

, replacing
“what you want the subtitle to say” (it can also be blank), “images” with the name of the
image folder in your project, and “picture_name.jpg” with the name of the image you
want to use. Of course, it is easier to do in Visual mode. From here, you can just open the
folder that holds your image on your computer and drag-and-drop the image from the
folder onto the page you’re building. Or you can place the cursor where you want the
image, click the button above marked with a “picture” icon, follow the prompts, and insert
your image where the cursor is. Note that this will also create an “images” folder in your
project (if it doesn’t already exist) and put the image file into the “images” folder.

When titles have been defined, if you click on the Show document outline icon completely
to the right of the toolbar associated with the R Markdown file, a table of contents
automatically generated from the titles is displayed and allows you to navigate easily in
the document:

Dynamic TOC

[Example Link](https://example.com)

[what you want the subtitle to say](images/picture_name.jpg)

https://example.com/

14

Customizing the generated document

The customization of the generated document is done by modifying options in the
preamble of the document. However, RStudio offers a small graphical interface to change
these options more easily. To do this, click on the gear icon to the right of the Knit button
and choose Output Options…

R Markdown Output Options

A dialog box appears allowing you to select the desired output format and, depending on
the format, different options:

15

R Markdown Output Options Dialog

For the HTML format for example, the General tab allows you to specify if you want a
table of contents, its depth, the themes to apply for the document and the syntax
highlighting of the R blocks, etc. The Figures tab allows you to change the default
dimensions of the graphics generated.

When you change options, RStudio will actually change the preamble of your document.
So if you choose to show a table of contents and change the syntax highlighting theme,
your header will become something like:

You can modify the options directly by editing the preamble.

Note that it is possible to specify different options depending on the format, for example:

title: "R Markdown Review"
output:
 html_document:
 highlight: kate
 knock: yes

16

The complete list of possible options is present on the official documentation site (very
complete and well done) and on the cheat sheet and the reference guide, accessible from
RStudio via the Help menu then Cheatsheets.

In addition to free text in Markdown format, an R Markdown document contains, as its
name suggests, R code. This is included in blocks (chunks) written the following way in
Source mode:

```{r}
r_code <- 2+2
```

Which will produce the following in Visual mode:

As this sequence of characters is not very easy to enter, you can use the Insert menu of
RStudio and choose R[^3], or use the keyboard shortcut on Mac or

 on Windows.

Note that it is possible to use other languages in code chunks.

Code block insertion menu

title: "R Markdown Review"
output:
 html_document:
 highlight: kate
 knock: yes
 pdf_document:
 fig_caption: yes
 highlight: kate

R code chunks

r_code <- 2+2

Command+Option+i
Ctrl+Alt+i

http://rmarkdown.rstudio.com/formats.html

17

In RStudio blocks of R code are usually displayed with a slightly different background color
to distinguish them from the rest of the document.

When your cursor is in a block, you can enter the R code you want and execute it with
Command + Enter. You can also execute all the code contained in a block by clicking on
the green “play” button at the top right of the code chunk.

Chunk output inline vs in condole

In RStudio, by default, the results of a block of code (text, table or graphic) are displayed
directly in the document editing window, allowing them to be easily viewed and kept for
the duration of the session.

This behavior can be changed by clicking the gear icon on the toolbar and choosing
Chunk Output in Console.

R code chunk options

It is also possible to pass options to each block of R code to modify its behavior.

Remember that a block of code looks like this:

The options of a code block are to be placed inside the braces , with a comma
separating each option.

Block name

The first possibility is to give a name to the block. This is indicated directly after the :

It is not mandatory to name a block, but it can be useful in the event of a compilation
error, to identify the block that caused the problem. Be careful, you cannot have two
blocks with the same name.

Options

In addition to a name, a block can be passed a series of options in the form
. Here is an example of a block with a name and options:

```{r}
x <- 1:5

{r}

r

{r block_name}

option=value

```{r blockName, echo = FALSE, warning = TRUE}
x <- 1:5

18

And an example of an unnamed block with options:

One of the useful options is the option. By default is , and the block of R
code is inserted into the generated document, like this:

But if we set the option, then the R code is no longer inserted into the
document, and only the result is visible:

Here is a list of some of the available options:

Option Values Description

echo TRUE/FALSE Show (or hide) this R code chunk in the
resulting knitted document

eval TRUE/FALSE Run (or not) the code in this code chunk
in the resulting knitted document

include TRUE/FALSE
Combines the options “echo and eval”;
either show and run, or hide and don’t
run

message TRUE/FALSE
Show (or hide) any system messages
generated by running this code chunk in
the resulting knitted document

warning TRUE/FALSE
Show (or hide) any warnings generated
by running this code chunk in the
resulting knitted document

There are many other options described in particular in R Markdown reference
guide{target = “_blank”} (PDF in English).

Change options

It is possible to modify the options manually by editing the header of the code block, but
you can also use a small graphical interface offered by RStudio. To do this, simply click on
the gear icon located to the right of the header line of each block:

```{r echo = FALSE, warning = FALSE}
x <- 1:5

echo echo TRUE

x <- 1:5
print(x)

## [1] 1 2 3 4 5

echo=FALSE

## [1] 1 2 3 4 5

https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf


19

Code Block Options Menu

You can then modify the most common options, and click on Apply to apply them.

Global Options

You may want to apply an option to all the blocks in a document. For example, one may
wish by default not to display the R code of each block in the final document.

You can set an option globally using the  function. For
example, inserting  into a code block will set
the  option to default for all subsequent blocks.

In general, we place all these global modifications in a special block called  and
which is the first block of the document:

Inline Code

It is also possible to write code chunks embedded in the text. If you go to Source mode
and type

“The sum of a pair of 2s is ` r 2+2 `”

and then knit the RMD, the resulting document will evaluate the r code between the
backticks. Note that you have to include the “r” at the beginning of your inline code chunk
to get it to recognize it as R code.

You could also pass variables around your document just like in a regular R program. For
example, on one line you could run,

``` {r} max_height <- max(women$height) ```

“The maximum height in the women data set is ` r max_height ` .”

The advantages of such a system are numerous:

knitr::opts_chunk$set()
knitr::opts_chunk$set(echo = FALSE)

echo = FALSE

setup

```{r, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)



20

a single document can show your entire analysis workflow, since the code, results
and text explanations are included

the document can be very easily regenerated and updated, for example if the source
data has been modified.

the variety of output formats (HTML, PDF, Word, slides, dashboards, etc.) makes it
easy to present your work to others.

Display tables

There are a number of ways for R Markdown Documents to show data tables. To start,
you can see how our RMD displays a table with no formatting:

It looks pretty basic. Next, to follow along you’ll want to load the following packages:

Flextable is better for showing simple tables supported by many formats. GT is better for
showing complex tables in HTML documents. Reactable is better for showing very large
tables in HTML by giving your audience the option to scroll through the tables.

women

##    height weight
## 1      58    115
## 2      59    117
## 3      60    120
## 4      61    123
## 5      62    126
## 6      63    129
## 7      64    132
## 8      65    135
## 9      66    139
## 10     67    142
## 11     68    146
## 12     69    150
## 13     70    154
## 14     71    159
## 15     72    164

pacman::p_load(flextable, gt, reactable)

"This is a flextable"

## [1] "This is a flextable"

flextable::flextable(women)



21

height weight

58 115

59 117

60 120

61 123

62 126

63 129

64 132

65 135

66 139

67 142

68 146

69 150

70 154

71 159

72 164

"This is a GT table"

## [1] "This is a GT table"

gt::gt(women)



22

height weight

58 115

59 117

60 120

61 123

62 126

63 129

64 132

65 135

66 139

67 142

68 146

69 150

70 154

71 159

72 164

You can see many other types of table formats people have created at https://www
.rstudio.com/blog/rstudio‑table‑contest‑2022/

Document Templates

We have seen here the production of “classic” documents, but R Markdown allows you to
create many other things.

The extension’s documentation site offers a gallery of the different possible outputs. You
can create slides, websites or even entire books, like this document.

"This is a reactable"

## [1] "This is a reactable"

reactable::reactable(women)

https://www.rstudio.com/blog/rstudio-table-contest-2022/
http://rmarkdown.rstudio.com/gallery.html


23

Slides

An interesting use is the creation of slideshows for presentations in the form of slides.
The principle remains the same: we mix text in Markdown format and R code, and R
Markdown transforms everything into presentations in HTML or PDF format. In general,
the different slides are separated at certain heading levels.

Some slide templates are included with R Markdown, including:

 and  for HTML presentations
 for PDF presentations via 

When you create a new document in RStudio, these templates are accessible via the
Presentation entry:

Create an R Markdown presentation

Other extensions, which must be installed separately, also allow slideshows in various
formats. These include in particular:

xaringan for HTML presentations based on remark.js
revealjs for HTML presentations based on reveal.js
rmdshower for HTML slideshows based on shower

ioslides Slidy
beamer LaTeX

https://slides.yihui.name/xaringan/%20for
https://remarkjs.com/
https://github.com/rstudio/revealjs
http://lab.hakim.se/reveal-js/#/
https://github.com/mangothecat/rmdshower
https://github.com/shower/shower


24

Once the extension is installed, it generally offers a starting template when creating a
new document in RStudio. These are accessible from the From Template entry.

Create a presentation from a template

Templates

There are also different templates allowing you to change the format and presentation of
the generated documents. A list of these formats and their associated documentation
can be accessed from the formats documentation page.

Note in particular:

the Distill format, suitable for scientific or technical publications on the Web
the Tufte Handouts format which allows you to produce PDF or HTML documents in
a format similar to that used by Edward Tufte for some of his publications
rticles, package that offers LaTeX templates for several scientific journals

Finally, the rmdformats extension offers several HTML templates particularly suitable for
long documents.

Again, most of the time, these document templates offer a starting template when
creating a new document in RStudio (entry From Template):

http://rmarkdown.rstudio.com/formats.html
https://rstudio.github.io/distill/
http://rmarkdown.rstudio.com/tufte_handout_format.html
https://github.com/rstudio/rticles
https://github.com/juba/rmdformats


25

Create a document from a template

Resources

The following resources are all in English…

The book R for data science, available online, contains a chapter dedicated to R
Markdown.

The extension’s official site contains very complete documentation, both for beginners
and for advanced users.

Finally, the RStudio help (Help menu then Cheatsheets) provides access to two summary
documents: a synthetic “cheat sheet” (R Markdown Cheat Sheet) and a more complete
“reference guide” ( R Markdown Reference Guide).

Example analysis in Rmarkdown

Now we can put the tools we just used to work!

First, create a new R Markdown Project in RStudio.

Then open a web browser, go to https://bit.ly/view‑ebola‑data , and download the CSV.
Here are the data you need.

http://r4ds.had.co.nz/r-markdown.html
http://rmarkdown.rstudio.com/
https://bit.ly/view-ebola-data


26

Open your “downloads” folder, and copy or move the CSV to the “data” folder of your new
project.

Create a new R Markdown Document in this project.

Open a web browser, go to https://tinyurl.com/ebola‑script , highlight the code (under
“ebola-script”, starting with 
and ending with  ), and copy that text.

Paste the text into your new RMD under the  chunk.

We’re going to need to find the data, so paste “data/ebola_sierra_leone.csv” inside the
readcsv function.

Next we’ll try running through the code to make sure it works. Click the Knit button
above.

It didn’t work! One small difficulty with R Markdown is that it has a very limited vision, and
only looks in its own folder. You need to tell it more explicitly where to look. See the new
package in the  section, ? Here will help us change the frame of
reference so we can access our data. Change our previous attempt to  to the
following:

Now if you Knit, everything should run nicely. However, the document still looks
disorganized, with visible code fragments and very basic displays. But we have the tools to
change it!

Move the  line and all the package loading below it up into the
setup code chunk. If you try Knitting again you’ll see a bunch of messages spitting out
from all these load statements. We don’t want everyone to see that, so add 

 to your setup code chunk.
It’s also common to do all your data loading in one place, so move your 

 and the  line up into the setup code chunk as well.

Next let’s break this document apart into various sections.

Cut the  line, and paste it into the white space between the
code chunks. We probably don’t want to show the parts where we’re adding data to the
tabyl, so in this code chunk add .

Remember how we inserted code chunks earlier? We can use that same command to
break code chunks apart, too. Break this code block apart into three individual chunks by
using Command+Option+i or CTRL+Alt+i between each section. Pull the other two
headers outside of the code.

Knit again and see what happens! You can play around with options here to see how they
change the results.

1 # Ebola Sierra Leone analysis
29 num_vars_plot

setup

# Load packages here
readcsv

ebola_sierra_leone <- readcsv(here("data/ebola_sierra_leone.csv"))

# Load packages ----

,
message=FALSE

# Load data --
-- readcsv

# Cases by district —-

echo = false

https://tinyurl.com/ebola-script


27

As an example you can go back to the source document and use one of the new tables
you learned about. Add  inside the  function, and try to display

 as a flextable.

Knit once more. You did it!

flextable, p_load(
district_tab



1

Lesson notes | Data structures

Created by the GRAPH Courses team

May 2023

This document serves as an accompaniment for a lesson found on https://
thegraphcourses.org.

The GRAPH Courses is a project of the Global Research and Analyses for Public Health
(GRAPH) Network, a non-profit headquartered at the University of Geneva Global Health
Institute, and supported by the World Health Organization (WHO) and other partners

https://thegraphcourses.org/


2



3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Intro
Learning objectives
Packages
Introducing vectors
Creating vectors
Manipulating vectors
From vectors to data frames
Tibbles

 creates tibbles
Wrap-up
Solutions

In this lesson, we’ll take a brief look at data structures in R. Understanding data structures
is crucial for data manipulation and analysis. We will start by exploring vectors, the basic
data structure in R. Then, we will learn how to combine vectors into data frames, the
most common structure for organizing and analyzing data.

1. You can create vectors with the  function.

2. You can combine vectors into data frames.

3. You understand the difference between a tibble and a data frame.

Please load the packages needed for this lesson with the code below:

The most basic data structures in R are vectors. Vectors are a collection of values that all
share the same class (e.g., all numeric or all character). It may be helpful to think of a

read_csv()

Intro

Learning objectives

c()

Packages

if(!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse)

Introducing vectors



4

vector as a column in an Excel spreadsheet.

Vectors can be created using the  function, with the components of the vector
separated by commas. For example, the code  defines a vector with the
elements ,  and .

In your script, define the following vectors:

You can also check the classes of these vectors:

Each line of code below tries to define a vector with three elements but has a mistake. Fix
the mistakes and perform the assignment.

The individual values within a vector are called components or elements.
So the vector  has three components/elements.

Creating vectors

c()
c(1, 2, 3)

1 2 3

age <- c(18, 25, 46)
sex <- c('M', 'F', 'F')
positive_test <- c(T, T, F)
id <- 1:3 # the colon creates a sequence of numbers

class(age)

## [1] "numeric"

class(sex)

## [1] "character"

class(positive_test)

## [1] "logical"

my_vec_1 <- (1,2,3)
my_vec_2 <- c("Obi", "Chika" "Nonso")

c(1, 2, 3)



5

Many of the functions and operations you have encountered so far in the course can be
applied to vectors.

For example, we can multiply our  object by 2:

Notice that every element in the vector was multiplied by 2.

Or, below we take the square root of :

You can also can add (numeric) vectors to each other:

Note that the first element of  is added to the first element of  and the second
element of  is added to the second element of  and so on.

Manipulating vectors

age

age

## [1] 18 25 46

age * 2

## [1] 36 50 92

age

age

## [1] 18 25 46

sqrt(age)

## [1] 4.242641 5.000000 6.782330

age + id

## [1] 19 27 49

age id
age id



6

Now that we have a handle on creating vectors, let’s move on to the most commonly used
object in R: data frames. A data frame is just a collection of vectors of the same length
with some helpful metadata. We can create one using the  function.

We previously created vector variables (id, age, sex and positive_test) for three
individuals:

We can now use the  function to combine these into a single tabular
structure:

Note that instead of creating each vector separately, you can create your data frame
defining each of the vectors inside the  function.

Most of the time you work with data in R, you will be importing it from
external contexts. But it is sometimes useful to create datasets within R
itself. It is in such cases that the  function will come in
handy.

To extract the vectors back out of the data frame, use the  syntax. Run the following
lines of code in your console to observe this.

From vectors to data frames

data.frame()

data.frame()

data_epi <- data.frame(id, age, sex, positive_test)
data_epi

##   id age sex positive_test
## 1  1  18   M          TRUE
## 2  2  25   F          TRUE
## 3  3  46   F         FALSE

data.frame()

data_epi_2 <- data.frame(age = c(18, 25, 46), 
                         sex = c('M', 'F', 'F'))

data_epi_2

##   age sex
## 1  18   M
## 2  25   F
## 3  46   F

data.frame()

$



7

Combine the vectors below into a data frame, with the following column names: “name”
for the character vector, “number_of_children” for the numeric vector and “is_married”
for the logical vector.

Use the  function to define a data frame in R that resembles the following
table:

room num_windows
dining 3
kitchen 2
bedroom 5

The default version of tabular data in R is called a data frame, but there is another
representation of tabular data provided by the tidyverse package. It’s called a ,
and it is an improved version of the data frame.

You can convert from a data frame to a tibble with the  function:

data_epi$age
is.vector(data_epi$age) # verify that this column is indeed a vector
class(data_epi$age) # check the class of the vector

character_vec <- c("Bob", "Jane", "Joe")
numeric_vec <- c(1, 2, 3)
logical_vec <- c(T, F, F)

data.frame()

Tibbles

tibble

as_tibble()

data_epi

##   id age sex positive_test
## 1  1  18   M          TRUE
## 2  2  25   F          TRUE
## 3  3  46   F         FALSE

tibble_epi <- as_tibble(data_epi)
tibble_epi

## # A tibble: 3 × 4
##      id   age sex   positive_test
##   <int> <dbl> <chr> <lgl>        
## 1     1    18 M     TRUE         



8

Notice that the tibble gives the data dimensions in the first line:

And also tells you the data types, at the top of each column:

There, “int” stands for integer, dbl” stands for double (which is a kind of numeric class),
“chr” stands for character, and “lgl” for logical.

The other benefit of tibbles is they avoid flooding your console when you print a long
table.

Consider the console output of the lines below, for example:

For your most of your data analysis needs, you should prefer tibbles over regular data
frames.

 creates tibbles

When you import data with the  function from {readr}, you get a tibble:

## 2     2    25 F     TRUE         
## 3     3    46 F     FALSE

# A tibble: 3 × 4
     id   age sex   positive_test
  <int> <dbl> <chr> <lgl>        
1     1    18 M     TRUE         
2     2    25 F     TRUE         
3     3    46 F     FALSE  

# A tibble: 3 × 4
     id   age sex   positive_test

  <int> <dbl> <chr> <lgl>        
1     1    18 M     TRUE         
2     2    25 F     TRUE         
3     3    46 F     FALSE  

# print the infert data frame (a built in R dataset)
infert # Veryyy long print
as_tibble(infert) # more manageable print

read_csv()

read_csv()

ebola_tib <- read_csv("https://tinyurl.com/ebola-data-sample") # Needs 
internet to run

class(ebola_tib)

## [1] "spec_tbl_df" "tbl_df"      "tbl"         "data.frame"



9

But when you import data with the base  function, you get a data.frame:

Try printing  and  to your console to observe the different printing
behavior of tibbles and data frames.

This is one reason we recommend using  instead of .

With your understanding of data classes and structures, you are now well-equipped to
perform data manipulation tasks in R. In the upcoming lessons, we will explore the
powerful data transformation capabilities of the dplyr package, which will further
enhance your data analysis skills.

Congratulations on making it this far! You have covered a lot and should be proud of
yourself.

Solution to the first r-practice block:

Solution to the second r-practice block:

Solution to the third r-practice block:

read.csv()

ebola_df <- read.csv("https://tinyurl.com/ebola-data-sample") # Needs internet 
to run

class(ebola_df)

## [1] "data.frame"

ebola_tib ebola_df

read_csv() read.csv()

Wrap-up

Solutions

my_vec_1 <- c(1,2,3) # Use 'c' function to create a vector
my_vec_2 <- c("Obi", "Chika", "Nonso") # Separate each string with a comma

df <- data.frame(name = character_vec, 
                 number_of_children = numeric_vec, 
                 is_married = logical_vec)

# Solution to the third r-practice block
rooms <- data.frame(room = c("dining", "kitchen", "bedroom"), 
                    num_windows = c(3, 2, 5))



10

Contributors

The following team members contributed to this lesson:

References

Some material in this lesson was adapted from the following sources:

Wickham, H., & Grolemund, G. (n.d.). R for data science. 15 Factors | R for Data
Science. Accessed October 26, 2022. https://r4ds.had.co.nz/factors.html.

This work is licensed under the Creative Commons Attribution Share Alike license.

DANIEL CAMARA
Data Scientist at the GRAPH Network and fellowship as Public Health
researcher at Fiocruz, Brazil
Passionate about lots of things, especially when it involves people leading
lives with more equality and freedom

EDUARDO ARAUJO
Student at Universidade Tecnologica Federal do Parana
Passionate about reproducible science and education

LAURE VANCAUWENBERGHE
Data analyst, the GRAPH Network
A firm believer in science for good, striving to ally programming, health
and education

KENE DAVID NWOSU
Data analyst, the GRAPH Network
Passionate about world improvement

https://r4ds.had.co.nz/factors.html
https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://127.0.0.1:6581/NA
https://thegraphcourses.org/members/eduardo_araujo/
https://thegraphcourses.org/members/lolovanco
https://thegraphcourses.org/members/kendavidn/

